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░ 1. Introduction 

The growing number of AI applications ranging from edge computing to IoT devices has increased the overall 

demand for efficient computational capabilities in embedded systems [1]. High-performance microcontrollers 

(MCUs) equipped with integrated floating-point units (FPUs) can provide the processing power required for AI 

workloads [2]; however, their associated cost is often a prohibitive barrier to deployment in resource-constrained 

environments [3]. This is especially important in cases where the sensitivity cost is exaggerated, like consumer 

electronics, industrial automation, wearable devices [4]. 

The problem comes from the core computational complexity of AI algorithms, which often depend on 

floating-point arithmetic in scenarios such as neural network inference and even signal processing [5],[6]. 

Floating-point emulation via software is flexible but incurs too much performance overhead, causing latency and 

energy waste [7]. This inefficiency becomes even more critical in real-time applications where responsiveness and 

power efficiency are important [8]. Hence, Hardware-based FPU designs are of great requirement to achieve high 

performance within the stringent requirements of cost and power limits inside embedded environment [9]. 

This study fills this critical gap by introducing a new area-efficient FPU architecture designed for cost-sensitive 

MCUs. For our FPU, we have created a three-stage pipelined architecture specifically for its sub-modules in order 

to have better optimization for internal operations while retaining low latency. In addition, a four-step pipeline is 

considered at the top module to ensure the most throughput and performance. In addition, we used our expertise in 

understanding the computational requirements of AI applications in developing custom hardware appliances [10] 

to optimize activation function evaluation in AI workloads. This integration notably boosts the floating-point unit's 

appropriateness AI tasks, doing efficient operations in environments with limited resources. 

AB ST R ACT  

The growing interest in AI applications within embedded systems has increased the shortcomings of affordable microcontrollers, which frequently do 

not include hardware floating-point units (FPUs). Historically, these devices have depended on software emulation for floating-point operations, 

leading to considerable performance limitations and diminished accuracy. This paper tackles this issue by introducing a power-efficient, 

high-performance single-precision FPU for resource-limited microcontrollers. Using Verilog, we developed a custom hardware FPU where the 

sub-modules used combinational 3-stage pipeline structure and the top module used 4-stage pipeline structure with sequential operation. A 

comparison with a nonpipelined version showed performance improvements. The throughput was boosted with a 56.36% gain in maximum clock 

speed, gain in throughput equals to 369.34%. The other benefits are a 13.19% reduction in the power consumption of the pipelined design. 

Dedicated hardware uses shared memory which saves more chip area for co-integration of high-performance computational elements such as 

hardware implementations of the activation functions used in different AI applications. 
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The main aim of this research is to illustrate both the feasibility and efficiency of incorporating a high-performance, 

cost-effective FPU into resource-constrained microcontroller units (MCUs), which in turn will allow for the 

deployment of AI functionalities across a wider array of applications. This study makes a good contribution to the 

world of VLSI design by offering a practical and efficient hardware solution that strikes a balance among 

performance, area, and power consumption. The proposed architecture undergoes thorough evaluation [11] through 

both simulation and synthesis processes, showing its ability to markedly improve the computational capabilities of 

embedded systems. 

░ 2. Preliminary 

The world of scientific and engineering computation has experienced an influence from the IEEE 754 standard for 

floating-point arithmetic [12]. Since it was first introduced in 1985, IEEE 754 has established a dependable and 

consistent framework for the representation and manipulation of real numbers within digital systems, which in turn 

provides interoperability among various hardware and software platforms. This standardization has played an 

important role in making accurate and reproducible numerical computations, an essential requirement for a wide 

array of applications, including scientific simulations and financial modeling, among others. Nevertheless, the 

requirements of modern computing continued to evolve, especially with the emergence of high-performance 

computing and embedded systems, leading to changes to improve upon weaknesses while also introducing 

emerging concepts. Since standardizing our representation of floating-point numbers for computers on 

IEEE754-1985, we have always had two basic numbers: single precision (32-bit) and double precision (64 bit), but 

the details of the functions, including rounding modes, exception handling [13], and special values (e.g., infinity 

and NaN) were all left to specification. It was revolutionary for its time, but the standard did not support newer 

formats and capabilities of computers as technology advanced. Because of the rise of applications needing better 

precision, larger numeric ranges, and better performance on certain computational tasks, the 1985 standard was not 

sufficient. 

To address these demands, improvements and extensions were introduced in the IEEE 754-2008 revision. The 

standard included new binary and decimal floating-point formats, such as half-precision (binary16) and 

quadruple-precision (binary128), which can serve a wider range of application needs. Revised according to the 

findings of the round-ups of 2008 also solved the problems of repetition, and reliability that is in the sections of the 

guidelines for exception handling and replication. In addition, it defined fused multiply-add operations [14] that 

provide considerable performance and accuracy enhancement. 

░ 3. Proposed Architecture 

3.1. FPU Sub-Modules 

The proposed FPU architecture consists of five arithmetic sub-modules; adder, subtractor, multiplier, divider, and 

comparator. These modules adopt a three-stage pipelined design of stages input fetch, Operation calculation, and 

result rounding with an eye on hardware efficiency while maximizing performance. This pipelining strategy is also 

key to increasing throughput and lowering latency, both important factors for AI workloads. And, because the 

comparison operation is very simple, a non-pipelined implementation is chosen for the comparator module. This 
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method helps to reduce hardware overhead and latency, since the comparison can be efficiently done in a single 

clock cycle. A combinational approach reduces control logic and register overhead which is key for cost-sensitive 

MCUs. This pipelined design considered for arithmetic sub-modules achieves a high-throughput floating-point 

operations, which accelerates AI computations effectively. This architecture provides a reasonable methodology 

for incorporating functional, efficient FPU capabilities into hardware resource-constrained embedded solutions by 

carefully adjusting performance versus hardware complexity. 

3.2. Top-Level Module 

Here, the top module for the proposed FPU architecture used a four-stage sequential logic pipeline, managing the 

access of data and control signals to the arithmetic sub-modules and AI acceleration unit. The pipelined design is 

efficient in order to maximize the throughput of the CPU and run floating point arithmetic as efficiently as 

possible. The 4 stages are, Instruction Decode and operand fetch, Operation execution, Result rounding and 

exception handling and result write-back and status update.  

The architecture of proposed Floating-point unit is given in figure 1. 

 

Figure 1. Proposed Architecture of Floating-Point Unit 

3.3. Custom AI Acceleration Module 

To improve efficiency for AI workloads, we implement the FPU with specialized hardware modules to provide 

acceleration for frequently used activation functions. The modules are cost-constrained for resource-optimized 

MCUs. This design includes hardware implementations of sigmoid, tanh, and ReLU activation functions. 

Hardware complexity is reduced by using piecewise linear approximation. 

3.4. Data Formats and Exception Handling 

The proposed Floating-Point Unit (FPU) adheres to the IEEE 754 standard for single-precision floating-point data 

representation. This particular format has been chosen to strike a harmonious balance between numerical precision 

and the easiness of hardware design, making it well-suited for a diverse array of artificial intelligence applications. 

The FPU is equipped with exception handling that proficiently manages scenarios involving Not-a-Number (NaN), 

infinity, zero, and subnormal numbers.  

To make effective software management of these exceptions, status flags are employed to signal their occurrence. 

Also, the comparator module appropriately sets status flags to say the results of comparison operations. Control 

over the FPU’s operations is governed by a 3-bit operation selection code, which dictates whether an arithmetic 

computation or an AI acceleration task will be executed. 
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░ 4. Implementation 

The proposed FPU architecture was designed using the Verilog Hardware Description Language (HDL). For tasks 

such as simulation, synthesis, and implementation—encompassing floor planning and routing—the Xilinx Vivado 

tool was used. The evaluation and prototyping were conducted on the Xilinx Artix-7 FPGA platform, serving as the 

target hardware for this endeavour. 

i) Synthesis and Implementation 

The Verilog HDL code undergoes synthesis via the synthesis tools provided by Xilinx Vivado. In this process, two 

constraint files were implemented: one to delineate the clock and reset signals, while the other served to outline the 

port connections essential for interfacing with the FPGA board. Throughout the synthesis procedure, efforts were 

made to enhance performance while concurrently minimizing area, all in light of the resource limitations of the 

targeted FPGA device. The floor planning and routing stages were performed using Vivado's implementation tools, 

ensuring efficient utilization of the FPGA's resources and meeting timing constraints. 

ii)  Verification and Simulation 

A thorough verification process was carried out using testbenches designed in Verilog HDL. Separate testbenches 

were constructed for each sub-module, providing an exhaustive assessment of their individual functionalities. Also, 

a main testbench was created to evaluate the behavior of the top-level module and to confirm the integration of the 

Floating-Point Unit (FPU) and the AI acceleration units. The testbenches were designed to cover a wide range of 

input values and testcases, ensuring better verification of the design's functionality. Simulations were performed 

using Xilinx Vivado's simulator. 

iii) FPGA Prototyping 

The design was successfully implemented on the Xilinx Artix-7 FPGA to check its functionality and performance 

in a real hardware setting. This FPGA platform gives us a solid testing ground to assess how well the FPU performs 

and how it uses resources. The successful run on the FPGA shows that we can indeed integrate this proposed FPU 

architecture into budget-friendly embedded systems. 

░ 5. Results 

To see how well the new pipelined FPU architecture performs, we compared its efficiency, power usage, and area 

(PPA) with a traditional non-pipelined FPU design that doesn’t include the special AI activation function block. 

Table 1. Performance Chart 

System Proposed FPU Existing FPU 

Clock Speed 86 MHz 55 MHz 

WNS 0.162 0.191 

Throughput 86 Mega-OPS 18.33 Mega-OPS 
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Table 2. Power Consumption Chart 

System Proposed FPU Existing FPU 

Static Power 0.138 W 0.138 W 

Dynamic Power 0.020 W 0.044 W 

Total Power 0.158 W 0.182 W 

 

Table 3. Resource Utilization Chart 

System Proposed FPU Existing FPU 

LUT 1434 1266 

FF 316 41 

BRAM 0 0 

DSP 2 2 

 

1)  Performance Analysis 

We took a close look at how the FPU architecture performed by measuring its clock frequency and throughput on 

the target FPGA. Check out Table-1 for a summary of the results. We found that the pipelined FPU hit a maximum 

clock frequency of 86 MHz, while the non-pipelined version reached up to 55 MHz. This represents a 56.36% 

increase in clock frequency for the pipelined architecture. The latency, measured in mega-operations per second 

(mega-ops), was 86 mega-ops for the pipelined FPU and 18.33 mega-ops for the non-pipelined FPU. This 

demonstrates a 368.14% improvement in latency for the pipelined design, showing its higher throughput. 

2)  Power Consumption 

Power consumption analysis was performed using Xilinx Vivado's power analysis tools. Table-2 presents the 

estimated power consumption of the FPU architecture on the target FPGA. The results show a total power 

consumption of 0.158W while the non-pipelined FPU consumed a total power consumption of 0.182 W. This 

indicates a 13.19% reduction in power consumption for the pipelined architecture, showing its power efficiency. 

3)  Resource Consumption 

The hardware resource utilization of the proposed FPU architecture was evaluated using Xilinx Vivado's synthesis 

reports. Table-3 summarizes the resource consumption on the target Xilinx Artix-7 FPGA (xc7a200tfbv676-2). 

The results show the number of Look-Up Tables (LUTs), flip-flops (FFs), Digital Signal Processors (DSPs), and 

Block RAMs (BRAMs) used by the design. The LUT count indicates the amount of combinational logic required to 

implement the FPU and AI acceleration modules. The flip-flop count represents the number of sequential elements 

used for registers and pipeline stages. The DSP blocks are used to accelerate multiplication and other arithmetic 

operations, and the BRAMs are used for lookup tables and data storage. The pipelined FPU required 13.27% more 

LUTs compared to the non-pipelined version. However, the pipelined FPU used 670.73% more FFs, which is 
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expected due to the pipelined register stages. Both designs used 2 DSPs, indicating no change in DSP resource 

usage. 

The results clearly demonstrate the performance and power efficiency advantages of the proposed pipelined FPU 

architecture. The improvement in clock frequency and latency indicates the effectiveness of the pipelined design in 

enhancing throughput. The reduction in power consumption further validates the design’s suitability for 

power-constrained applications. 

While the pipelined FPU uses slightly more LUTs and slightly more FFs compared to the non-pipelined version, 

the performance gains and power savings justify the increased resource utilization. The increased FF usage is 

expected due to the pipelined design, and the LUT increase is a reasonable trade-off for the increase in 

performance. The AI activation modules also contribute to the increase of LUTs. 

The comparison with the non-pipelined FPU shows the benefits of the proposed architecture, demonstrating its 

superiority in terms of performance and power efficiency. These results confirm the feasibility of integrating a 

high-performance, low-power FPU into cost-constrained MCUs, enabling the deployment of AI capabilities in a 

wider range of embedded applications. 

░ 6. Conclusion 

This paper presented a pipelined FPU architecture optimized for cost-constrained MCUs, specifically targeting the 

integration of AI capabilities. Implemented and evaluated on an FPGA, the design demonstrated improvements in 

performance, achieving a 56% faster clock frequency and a 368% reduction in latency, alongside a 13% decrease in 

power consumption, when compared to a non-pipelined implementation. The inclusion of custom AI acceleration 

modules, using piecewise linear approximations, further enhances the FPU’s efficiency for AI workloads, making 

it a viable solution for resource-limited embedded systems. Future research will explore advanced optimizations for 

the AI modules and investigate broader application domains. 
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