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░ 1. Introduction 

This study considers the numerical integration of second-kind Volterra Integro-Differential Equations (VIDEs) of 

the form 

        

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,        (1.1) 

using a general linear multistep method of the form 
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The study of second-kind Volterra Integro-Differential Equations (VIDEs) has attracted considerable attention due 

to their broad applications in science and engineering. Traditional solution techniques, including direct 

computation, Adomian decomposition, variational iteration, successive approximations and successive 

substitutions, often face challenges such as computational inefficiency for higher-order equations and difficulties in 

implementing unrealistic series (Wazwaz, 2015). To address these limitations, a numerical method based on the 

third- derivative Linear Block Algorithm (LBA) was developed, utilizing a Computer Algebra System (CAS).  

The Adomian Decomposition Method (ADM), developed by George Adomian in the 1970s-1990s, is a semi- 

analytical technique for solving linear and nonlinear differential equations without linearization or perturbation. By 

decomposing complex problems into a convergent series of solvable components and using Adomian polynomials 

for nonlinear terms, ADM provides accurate, stable, and often closed-form approximate solutions across physics, 
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engineering and applied mathematics (Maturi & Malaikah, 2021; Mak et al., 2021; Chang, 2019). Recent 

advancements have focused on improving convergence and computational efficiency, including modified 

decomposition methods for Volterra-type of integral equations and applications in modeling real-world phenomena 

such as disease spread (Kareem et al., 2022; Agbata et al., 2022). Despite challenges such as sensitivity to initial 

conditions and computational complexity for higher-order polynomials, ADM remains a robust and versatile 

analytical tool (Islam & Srivastava, 2024a, 2024b). 

Complementary numerical methods, including the Variational Iteration Method (VIM), Direct Computation 

Method (DCM) and Linear Block Approach (LBA), further expand the toolkit for solving differential and integral 

equations. VIM leverages Lagrange multipliers for rapidly converging iterative approximations without 

linearization, showing high efficiency in nonlinear problems, though it depends heavily on initial guesses and 

transformation of integral equations (Memon et al., 2023; Liu et al., 2025; Islam & Srivastava, 2024a). DCM offers 

a direct, non-iterative approach using numerical quadrature, particularly effective for linear or separable kernels, 

and has inspired hybrid and transform-based schemes to improve convergence and precision (Oyedepo et al., 2024; 

Adu et al., 2023; Aggarwal et al., 2023). The LBA, developed by Adeyeye & Omar (2016), provides efficient 

multi-point computation for initial value problems, handling stiff and higher-order systems with superior accuracy 

and stability, further enhanced by generalized multi-step algorithms (Sabo & Adeyeye, 2025; Raymond et al., 

2023). Collectively, these methods illustrate the evolving landscape of numerical and semi-analytical techniques, 

balancing accuracy, computational efficiency and adaptability across scientific and engineering applications. 

1.1.  Objectives of the Study 

The following are objectives of the study:  

1. To derive some third-derivative numerical schemes using the LBA. 2. To obtain the continuous form of third 

derivative numerical schemes. 3. To obtain the higher order numerical schemes using the LBA. 4. To establish the 

basic properties of the new numerical schemes. 5. To apply the numerical schemes on some Volterra integral 

equations of second kind. 6. To compare the numerical results obtain with the existing methods. 

░ 2. Derivation of the New Linear Block Algorithm (LBA) Scheme 

The new third derivative Linear Block Algorithm (LBA) is derived with the help of proposition 2.1 according to 

Sabo & Adeyeye (2025). 

Proposition 2.1 

The general linear multistep method (1.2) only one numerical scheme exists from every one-step block hybrid 

method. The linear block algorithm of the form 
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and the higher derivatives of (2.1) of the form 
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is consider, where  1
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Proof 

In order to obtain a new third-derivative numerical scheme with six grid points, equations (2.1) and (2.2) are solved 

sequentially to derive a polynomial of the form 
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The generalized algorithm (2.1) is expanded to give a new numerical scheme as 
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The higher derivatives of the new numerical scheme are 
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By simplifying  1

j
, the unknown coefficients of   in equation (2.5) are obtained as 
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Similarly, the expressions  1

 j
 are simplified to determine the unknown coefficients of the higher derivative 

 in equations (2.6) and (2.7) as 
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░ 3. Analysis of new LBA Scheme 

 The new third-derivative LBA were numerically analyzed. These analyses are order and error constants, 

consistency, Zero-stability, Convergent and region of absolute stability. 

3.1 . Order and Error Constant of LBA Scheme 

Using the corollary 3.1 and corollary 3.2 to obtained the order and error constant of new LBA scheme. 

Corollary 3.1 

The linear operator   hL n ;  associate with the local truncation error of the LBA defined in (2.5) and its higher 

derivatives (2.6) and (2.7) is given as 

           090808

08

100808

08

110808

08 0,0,0 hhChhChhC nnn   . 
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Corollary 3.2 

The local truncation error of (2.5) to (2.7) assume    to be sufficiently differentiable and expanding equation 

(3.1) to (3.3) about n  using a Taylor series to obtain 
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Proof 

Expanding equations (2.5) to (2.7) using Corollary 3.2 and collect the like terms to get 
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3.2 . Consistency of LBA Scheme 

Definition 3.1: Given the new numerical scheme, the first and second characteristic polynomials are defined as, 
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where z  is the principal root, 0k   and 2 2

0 0 0   . The new numerical scheme is said to be consistent if it 

satisfies the following conditions; 

1) the order 1p  , 

2) 
0

0
k

j

j




 , and 

3) '(1) (1)   

According to definition 3.1, a LBA is consistent since it is of uniform order eight. Therefore, the LBA satisfies this 

condition and is deemed consistent. 

3.3.  Zero Stability of LBA Scheme 

A LBA Scheme is said to be Zero-stable for any well behaved problems provided if 

1) all roots of  r  lies in the unit disk, 1r  

2) any roots on the unit circle  1r  are simple. 

Hence  

 
765432
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u




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(3.6) 

Therefore, equating (3.6) equal to zero and solving for u gives 1u , hence the LBA scheme is zero-stable.  

3.4 . Convergence of LBA Scheme 

By Dahlquist theorem, the necessary and sufficient conditions for LBA scheme to be convergent is that it must be 

consistent and zero-stable (Sabo & Adeyeye, 2025). Therefore, the new LBA scheme is convergent, since it 

consistent and zero-stable. 

3.5 . Region of Absolute Stability (RAS) of LBA Scheme 

To determine the regions of absolute stability of new LBA scheme, a method that requires neither the computation 

of roots of a polynomial nor solving of simultaneous inequalities was adopted. This method is called the Boundary 

Locus Method (BLM). The boundary locus method was used to obtained the stability polynomial of LBA scheme 

as 
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Using the stability polynomial in equation (3.7) on Matlab R2024a, we obtained the RAS of LBA scheme as 

 

Figure 3.1. Regions of absolute stability of LBA scheme 

░ 4. Numerical Simulation 

The new LBA scheme was applied on Volterra integro-differential equations of second kind and the results are 

numerically tabulated and textually shown to compare the results with the existing methods. 

Example 4.1 

Consider the Volterra integro-differential equation of the form  

            



0

50,10,cos2cossin' d    (4.1) 

with exact solution given as  

     exp           (4.2) 

Source: See [Chen & Zhang, (2011); Faires & Burden, (2015); Majid & Mohamed, (2019)] 

Example 4.2 

Consider the Volterra integro-differential equation of the form  

    
   
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1
1exp' d    (4.3) 

with exact solution given by  

 

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


1

1
           (4.4) 

Source See: [Faires & Burden, (2015); Majid & Mohamed, (2019)] 
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Example 4.3 

Consider the nonlinear Volterra integro-differential equation of the form  

                    10',10,'sinexpsinsinexp
2

1
''

0









  



d  (4.5) 

with exact solution given by  

      cossin            (4.6) 

Source See: [Kamoh et al. (2017)] 

The following Acronyms were used in the tables and figures. 

Acronyms Meaning 

  Points of Evaluation 

ES Exact Solution 

CS Computed Solution in LBA 

ELBA Error in LBA 

EABM5 Error in Fifth Order Adams-Bashforth-Moulton Predictor-Corrector Method of Faires & 

Burden (2015)  

E2P3B Error in Two Point Three-Step Block Method as in This Research of Majid & Mohamed, 

(2019) 

EGBDF5 Error in Combination of Boundary Value Methods and Fifth Order Generalized Backward 

Differentiation Formula by Chen & Zhang, (2011) 

ETR Error in Trapezoidal Rule using Three Quadrature Rules of Kamoh et al., (2017)  

EGR Error in Gaussian Rule using Three Quadrature Rules of Kamoh et al., (2017) 

ES13R Error in Simpsons 1/3 Rule using Three Quadrature Rules of Kamoh et al., (2017) 

Table 4.1. Comparison Numerical Results of Example 4.1 

  ES CS ELBA EGBDF5 EABM5 E2P3B 

0.25 0.77880078307140486825 0.77880078307140486820 2.9820e-17 2.3922e-02 8.1337e-03 6.1138 e-03 

0.125 0.88249690258459540286 0.88249690258459540286 1.0000e-20 3.1790e-04 4.7616e-04 3.9009e-04 

0.0625 0.93941306281347578612 0.93941306281347578612 0.0000e+00 4.3708e-06 2.1034e-06 1.6881e-05 

0.03125 0.96923323447634408185 0.96923323447634408185 0.0000e+00 7.5567e-08 7.8509e-07 6.1208e-07 

0.015625 0.98449643700540840599 0.98449643700540840599 0.0000e+00 - 2.6828e-08 2.0516e-08 

0.0078125 0.99221793826024351211 0.99221793826024351211 0.0000e+00 - 8.7684e-10 6.6334e-10 
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Table 4.2. Comparison Numerical Results of Example 4.2 

  ES CS ELBA EABM5 E2P3B 

0.025 0.97560975609756097561 0.97560975609756028764 6.8797e-16 1.7212e-08 8.3237e-08 

0.0125 0.98765432098765432099 0.98765432098765423863 8.2360e-17 2.0551e-09 3.8384e-09 

0.00625 0.99378881987577639752 0.99378881987577639193 5.5900e-18 1.9089e-10 2.0775e-10 

0.003125 0.99688473520249221184 0.99688473520249221546 3.5600e-18 1.1926e-11 1.2654e-11 

0.0015625 0.99843993759750390016 0.99843993759750390120 1.0400e-18 7.4529e-13 9.6889e-13 

0.00078125 0.99921935987509758002 0.99921935987509758099 9.7000e-19 4.6518e-14 4.3676e-13 

 

Table 4.3. Comparison Numerical Results of example 4.3 

  
ES CS ELBA6 ETR EGR ES13R 

0.16 -0.82790907676138098573 -0.82790976676138098591 6.9000e-07 1.9000e-09 1.2512e-05 3.4135e-06 

0.32 -0.63466885746632310092 -0.63466888990974523015 3.2443e-08 1.3900e-08 3.2919e-04 2.6456e-05 

0.48 -0.42521574723780130526 -0.42521574489126308478 2.3465e-09 5.6600e-08 2.0860e-03 8.5434e-05 

0.64 -0.20490031652190056171 -0.20490031092634578321 5.5956e-09 1.5330e-07 7.7089e-03 1.9242e-04 

0.80 0.02064938155235734071 0.02064938023676800153 1.3156e-09 3.2662e-07 2.1169e-02 3.5240e-04 

0.96 0.24567158222854160950 0.24567158258416091142 3.5562e-10 5.9210e-07 4.8093e-02 5.6512e-04 

 

 

Figure 4.1. Graphical Curve of table 4.1 

 

Figure 4.2. Graphical Curve of table 4.2 
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Figure 4.3. Graphical Curve of table 4.3 

░ 5. Discussion of Results 

The derivation of the new third-derivative Linear Block Algorithm (LBA) begins by applying Proposition 3.1, 

which links the general linear multistep framework to the underlying block hybrid formulation. After deriving the 

scheme, its numerical properties are analyzed: using Corollaries 3.1 and 3.2, the scheme is shown to have a uniform 

order of eight, satisfying consistency requirements; zero-stability is verified by ensuring the roots of the 

characteristic polynomial lie within the unit disk; and convergence follows directly from Dahlquist’s theorem. 

Finally, the region of absolute stability is determined using the Boundary Locus Method and MATLAB 

visualization confirms that the new LBA scheme possesses a robust stability region suitable for reliable numerical 

integration. 

The numerical results presented in Tables 4.1 to 4.3, together with Figures 4.1 to 4.3, provide a clear comparative 

assessment of several numerical schemes applied to different Volterra integro-differential equations. For Example 

4.1, the results show that the Linear Block Approach (LBA) achieves excellent agreement with the exact solution 

across all step sizes, as reflected in the extremely small ELBA values. The Generalized Backward Differentiation 

Formula (EGBDF5) also performs remarkably well with errors close to machine precision. In contrast, the 

Adams-Bashforth-Moulton method (EABM5) and the Two-Point Three-Step Block Method (E2P3B) display 

higher error values, particularly for relatively large step sizes, although both methods exhibit consistent reductions 

in error as the step size decreases. The plotted curve in Figure 4.1 highlights this trend, with the LBA and EGBDF5 

curves nearly overlapping with the exact solution, while the other schemes converge more gradually. 

In Example 4.2, the numerical comparison further reinforces the robustness of the LBA. The ELBA values remain 

extremely small across all step sizes, approaching the level of round-off error. The competing methods, EABM5 

and E2P3B, show larger but steadily declining error values as the step size decreases, confirming their convergence 

but at a slower rate compared to the LBA. The closeness between the computed LBA solution and the exact 

solution (CS and ES) underscores the suitability of the block method for mild kernel Volterra equations. Figure 4.2 

clearly illustrates this superior performance, with the LBA curve essentially indistinguishable from the exact 

solution, while EABM5 and E2P3B track below with visibly larger deviations, especially at coarser step sizes. 
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For Example 4.3, which involves a nonlinear Volterra integro-differential equation, the trend remains consistent 

but with more pronounced differences among the methods. The ELBA errors demonstrate high accuracy of the 

optimized block approach, although the increasing nonlinearity leads to slightly larger error magnitudes compared 

to Examples 4.1 and 4.2. The trapezoidal rule (ETR), Gaussian rule (EGR) and Simpson’s 1/3 rule (ES13R), 

applied using three-point quadrature, exhibit significantly larger error levels, particularly EGR and ES13R, whose 

errors rise with step size due to their sensitivity to nonlinear integrands. Figure 4.3 visually confirms these 

disparities: the LBA curve remains closest to the exact nonlinear solution, while the classical quadrature-based 

methods diverge more noticeably. Overall, the tables and figures demonstrate the superior stability, accuracy, and 

convergence properties of the LBA across both linear and nonlinear Volterra integro-differential equations. 

░ 6. Summary and Conclusion 

This study focused on the development and analysis of a new third-derivative Linear Block Algorithm (LBA) for 

solving Volterra integro-differential equations of the second kind. The method was derived using a generalized 

linear multistep framework, supported by interpolation, collocation, and the use of a Computer Algebra System 

(CAS) to obtain the continuous and discrete forms of the numerical scheme. Its fundamental numerical properties 

order and error constant, consistency, zero-stability, convergence, and region of absolute stability were rigorously 

established. The method was shown to possess a uniform order of eight and a stable characteristic polynomial, 

confirming strong theoretical reliability. The region of absolute stability was obtained using the Boundary Locus 

Method and visualized with MATLAB to further validate the method’s robustness. 

The numerical experiments conducted using three benchmark Volterra integro-differential equations demonstrated 

that the new LBA scheme consistently outperforms existing numerical methods, including Adams- Bashforth- 

Moulton predictor–corrector methods, generalized backward differentiation formulas, block multistep schemes, 

and standard quadrature rules. Results showed extremely small errors-often approaching machine precision—and 

excellent agreement with the exact solutions for both linear and nonlinear problems. Overall, the newly developed 

third-derivative LBA is efficient, accurate, and stable, making it a highly reliable tool for solving Volterra 

integro-differential equations of the second kind. Its superior convergence and stability properties position it as a 

valuable contribution to numerical analysis and computational mathematics. 

░ 7. Suggestion for Further Research  

1) Optimized High-Order Linear Block Algorithms for Solving Volterra Integro-Differential Equations. 

2) Adaptive Third-Derivative Block Methods for Nonlinear and Memory-Dependent Volterra Integro-Differential 

Systems. 

3) Linear block algorithm for numerical solution of Fredholm integral equations. 

4) Numerical Scheme for the solutions of Volterra Fredholm-integral Equations. 

5) Derivation of block hybrid method for solving Volterra-Fredholm Integro-Differential Equations. 
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