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ABSTRACT

1. Introduction

This study considers the numerical integration of second-kind Volterra Integro-Differential Equations (VIDEs) of
the form

pH(£)=9(&)+ o[ K(&,7)plc)dz (L)

using a general linear multistep method of the form

1 1
zajpmj = hﬂZﬂjlgm-j (12)
=0 =0

The study of second-kind Volterra Integro-Differential Equations (VIDES) has attracted considerable attention due
to their broad applications in science and engineering. Traditional solution techniques, including direct
computation, Adomian decomposition, variational iteration, successive approximations and successive
substitutions, often face challenges such as computational inefficiency for higher-order equations and difficulties in
implementing unrealistic series (Wazwaz, 2015). To address these limitations, a numerical method based on the
third- derivative Linear Block Algorithm (LBA) was developed, utilizing a Computer Algebra System (CAS).

The Adomian Decomposition Method (ADM), developed by George Adomian in the 1970s-1990s, is a semi-
analytical technique for solving linear and nonlinear differential equations without linearization or perturbation. By
decomposing complex problems into a convergent series of solvable components and using Adomian polynomials
for nonlinear terms, ADM provides accurate, stable, and often closed-form approximate solutions across physics,
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engineering and applied mathematics (Maturi & Malaikah, 2021; Mak et al., 2021; Chang, 2019). Recent
advancements have focused on improving convergence and computational efficiency, including modified
decomposition methods for Volterra-type of integral equations and applications in modeling real-world phenomena
such as disease spread (Kareem et al., 2022; Agbata et al., 2022). Despite challenges such as sensitivity to initial
conditions and computational complexity for higher-order polynomials, ADM remains a robust and versatile
analytical tool (Islam & Srivastava, 2024a, 2024b).

Complementary numerical methods, including the Variational Iteration Method (VIM), Direct Computation
Method (DCM) and Linear Block Approach (LBA), further expand the toolkit for solving differential and integral
equations. VIM leverages Lagrange multipliers for rapidly converging iterative approximations without
linearization, showing high efficiency in nonlinear problems, though it depends heavily on initial guesses and
transformation of integral equations (Memon et al., 2023; Liu et al., 2025; Islam & Srivastava, 2024a). DCM offers
a direct, non-iterative approach using numerical quadrature, particularly effective for linear or separable kernels,
and has inspired hybrid and transform-based schemes to improve convergence and precision (Oyedepo et al., 2024;
Adu et al., 2023; Aggarwal et al., 2023). The LBA, developed by Adeyeye & Omar (2016), provides efficient
multi-point computation for initial value problems, handling stiff and higher-order systems with superior accuracy
and stability, further enhanced by generalized multi-step algorithms (Sabo & Adeyeye, 2025; Raymond et al.,
2023). Collectively, these methods illustrate the evolving landscape of numerical and semi-analytical techniques,
balancing accuracy, computational efficiency and adaptability across scientific and engineering applications.

1.1. Objectives of the Study
The following are objectives of the study:

1. To derive some third-derivative numerical schemes using the LBA. 2. To obtain the continuous form of third
derivative numerical schemes. 3. To obtain the higher order numerical schemes using the LBA. 4. To establish the
basic properties of the new numerical schemes. 5. To apply the numerical schemes on some Volterra integral

equations of second kind. 6. To compare the numerical results obtain with the existing methods.
:72. Derivation of the New Linear Block Algorithm (LBA) Scheme

The new third derivative Linear Block Algorithm (LBA) is derived with the help of proposition 2.1 according to
Sabo & Adeyeye (2025).

Proposition 2.1

The general linear multistep method (1.2) only one numerical scheme exists from every one-step block hybrid

method. The linear block algorithm of the form

2 h i
Poey = Z—(n.,) P+

1
j=0 ) j=0

gl
U'I*II\)
alw
(S NN
PN

gl

(2.0)
and the higher derivatives of (2.1) of the form
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is consider, where A,”- =¥z qug =¥ 'E and

L2 () ) (3 ()

[ sh) [ shj (o) [shj (sh) [shj (sh) (h)’ (ny P
,11' ‘ j - fz zﬂz ;2 ﬁllz ' a (3-0)
[ sh) [ shj (oy [shj [Sh) [5hj (sh) (hy (5*1)“ (h)* .
) f , ) ;! , 2 ;2! , g2! , §2! \ i2! , 2 (;}-)5 E;)gl-
( shj ( sh) 0 [shj [shj (shj (shj (h)’ 5l (5-o)

n f - g! , 3 13! . g3! . §3! \ é3! , 3 ) (5(;) ) gi)a)'

¥ ( 5h) ( shj O [shj [Sh) (shj (5h) () [ Z7| eny |57 eny
] ;1! - éu . A ;! . 34! . §4! . ﬂ4! . A (§7r:) ((Zf ;)?l!
( shj ( sh) 0y (shj [shj (sh) [shj (hy’ 8 6-o):
(5 L) o () () G () | | 2] |G
5 5 (0® s 5 5 5 (h)* (ehy° (eh)°e
o 6 el & e 8 6 6 1ol 10-o)!
Co) (3 o () (30 () () o
7 7 7 7 7 7 7 e
Proof

In order to obtain a new third-derivative numerical scheme with six grid points, equations (2.1) and (2.2) are solved

sequentially to derive a polynomial of the form

B8 1 +P L8 z+ﬂ09 + 5,9
5 5 5 " 5 n+5 (2.3)
pl& +n)=a,p +p,p ,+psp 5+hH° :
5 ™5 5 Mg 5 ™5 +,Bg n+g+ﬂ§ n+§+ﬂﬂ £+ﬂl n+l
5 5 5 5 5 5
Where n=¢,+¢h and
% 25, 15 25 ,
=3-—n+— =-3+ 205 - 25,° =1-— ,

a, AR AL n-25 g =10
5o 2L 1441 211 73 (107 o 85 . 1375 . 34375 . 40625 . 325
1 ="7560000 25a360000" *90720” 72" ‘am2” 216" coss” *asaes” 7z576" " 20736”
s 8L 188 645 . 5, 11 . % . 15, 8125 , 815 . 5
2 =7560000 22660000"  3628800" ' 1008” 864" aase” 512" 2a1e2” ' 3e2e8” 146152”
g T3, 87 207 . 1. 47 . 7 . 385 . 625, 3125, 3125
° ~ 820000 2100007 48384’ 67 288”7 16" 384’ 38a’ ' 2016" 6912
g __ 0647 STITIS 52907 . 25 . G5 . 625 . 3875 , O6BTS . 171875 , 15625 ,
177560000 " 90720007 453600 " 72" T432" 32" T60as” "asasa” 725767 " 20736"
g . 30647 19121 149903 . 25 . 85 . 3575 . 1875 , 34375 , 78125 , 15625 .,
2777560000 ' 6480007 36288007 144" "gea’ " 3ase” " 1512" ~ 24102" 362887 20736
g 78 1081 2 .5 1. 5, 125, 3125, 3125 , 3125 ,
2 540000 s040000” 678" 72" 16" 12" T224" “saze” " ases” ' sor2
g 2L 1889 . 1943 . 5 . 1 . 36 . 15, 3125 , 3125, 3125 ,
¢~ 77560000 11340000 ' 36288007 288" 54" 34567 786" 24102" ' 9072” 20736 (2.4)
g 8L 87 1 . 1o, 1 . 5 . 125, 625 , 35 . 35
1= 7560000 25360000" 162007 ‘504”7 432" 432" 'eoss” T asasd” 7z5r6” ' 145152
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The generalized algorithm (2.1) is expanded to give a new numerical scheme as

1, 5 "
P 1= Pn —ghp Wt Y P n+h3[1\w‘9 1 ARG ARG ALY L+ ALT  FARS s+ ALY +A17‘9n+1]
-2 | -5 -2 e s s L
2, ., 5 "
P 2= Pn _ghpn"' o Y n+h3[/\20‘9 1t AT AR A AR AT AT S+ ARS +Az7‘9n+1J
ng 1 ng n2 neg nel neg neg
1 ., 5 "
pml = Pn +ghp nt P +h3[ g +A31'9 2 +A32'-9 +A33L9 1 +A34'9 2 +A35’-9 3 +A36’9 4 +A37L9n+1j
5
P.2=FPn +§hp'n+ > pl‘n+h3[A4 g +1\41'9 2 JrA42Lg +A43L9 L +A44‘9 2 +/\45'9 3 +A46'9 K JrA47‘gn+1]
5 5 5

w
/N
(SR}
f =
N——
~
b
%
=
s
VR

A5o‘9 1 +A51‘9 2 +Ag 8, +A53‘9 1 +A54‘9 2 +A55‘9 3+Ase‘9 4 +A57‘9n+1j

) @25)
P 4=p +ghp'n+ T p”"+h3(A60‘9n,1 +A61‘9n,g +Ag9, +A53L9IHl +A649n+z +A55L9n+§ +A55'9n+ﬁ +A679MJ
5 : 5 5 5 5 5 5
N (1) ST
p L =p,thp+ A 1 +A38 , +ApI + Ay '9 K FA8 3+ A8 s+ A A
21 g s 5 s g ni
The higher derivatives of the new numerical scheme are
. 1.
P a=P n_ghp +h? f[Xno‘g 1 +X111‘9 2 + X129 +X113‘9 1+X114‘9 2 +X115‘9 3+X11619 4+X117‘9n+1J
5
. 2
P nj:p nfghp n+h [X120'9n 1 +X121‘9 2 +X122‘9 +X123’9n 1 +X124‘9 2 +X125‘9 3 +X126'9n 4 +X127‘9n+1j
, 1
P =ph +5hp +h? (Xmo‘g 1 +X131‘9 2 +X1329 +X133‘9 1 +X134‘9 2 Jr)(135'9 3 +XmsL9 4 JrX137‘9n+1]
"5
. L2
P 2=P n+gh pyt+h? [Xuo e +X141‘9 2 + X +X143‘9 1 +X144‘9 2 +X145‘9 3 +X14619 K +X147‘9n+1J
5
. C L3
P =P n+ghp n (Xlso’-9 1 +X151'9 2 +X152'9 +X153’9 ! +X154‘9 2 +X155'9 3 +X156’9“ 4 +X157'9n+lj
5
. . 4 "
P n+i:p n+ghp n+h [XlsoLgl 1 +X161‘9 2 +X162‘9 +X163'9 1 +X1649 2 +X1653 3 +X166'9 4 JrX167'9n+1J
5
Plan=p o th p" +h? [Xuo‘gni +X171'9n,3 + X129, +X173‘9n+1 +X174‘9n+g +X175‘9n+§ +X17e‘9n+5 + X177‘9n+1] (26)
5 5 5 5 5 5
p" _p”n+h[ 2109 ‘*'in19 2 +X212‘9 +X213‘9 +X214‘9 2 +X215‘9 3 +X216‘9 +X21719n+lJ
P nW =p n+h{X220 +X221‘9 2t XSy + X223‘9 "'Xzzlegmg + X225‘9n+§ + Xzzslgmi + X227‘9n+1j
5 5 5 5
p" n+7 1 =P n+h[Xz30'9 231‘9’]7; + Xondh + X233‘9n+1 + Xzszzlgmg + X23519n+§ + X236'9n+£ + X237‘9n+1]
5 5 5 5 5
p" =,D n+h[X24o‘9 241‘9"73 + X + Xz4319n+1 + X244‘9n+3 + X24519n+§ + X24619n+i + Xz47‘9n+1J
5 5 5 5 5
p' =p n+h(Xzso 1t X251'9 + Xosdy + X25319n+l + X254‘9n+g + Xzss‘gnﬁ + X256‘9n+i + X257‘9n+1j
5 5 5 5 5
pY :p"n+h[X260,9 1+ X o+ Xoppd + Xpged | + X8 2 + X659 5+ Xopged 4 +Xze7’9n+1j
ntg -5 -2 n+g n+e n+e s
Pl :p”n+h(X27o'9n1 +X2713n£ + X +X273‘9n+1 +X274’9n+g +X275‘9n+§ +X276'9n+ﬂ +X277‘9n+1J (27)
5 5 5 5 5 5
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By simplifying A, =¥"Z, the unknown coefficients of A in equation (2.5) are obtained as

6533 _ 2573 3743 571 2187 23 169
32400000 590625 75600000 1771875 2800000 21875 72576

1501 103 1807 31 351 208 1

Ay 151200000 | (A2 3543750 | (A 453600000 | Ay | 1181250 | (Aso 5600000 |(Ag 1771875 | (A 5376
A 210967 || A 4594 A 150137 A 3194 A 73683 A 14408 || A 1885
11 —_—— 21 - 31 —_— 41 - 51 61 71 —_—
A 151200000 | | » 590625 | | » 151200000 | , 590625 | | » 5600000 || » 590625 | | o 48384
2 1249 z _169 ? 3891 e | 83 ° 2403 ° 3232 7| A915
Aw|_| 3024000 ||A=|_| 70875 ||A=|_| 6480000 | A« _| 13125 As|_| 112000 |[Aw|_| 70875 || |_| 24192
Ay, 21431 ! Ay, B 307 | Ay, B 635 ’A44 B 23 Ay, 1377 ’ Ags 1328 | Ay, 4105
A 90720000 | | o 236250 || A 3360000 | A 20250 | | A 1120000 || A 118125 || A 145152
A“ 7517 A” 313 A“ 5483 A‘5 277 A“ 441 A65 3424 A’5 463
1 75600000 % 590625 * 75600000 “ 590625 5 400000 6 590625 & 24192
Ay 143 A, 236 Ag) | 7967 Ag | 68 Ag) | 1431 [\Ag) | 104 A, 151
5600000 1771875 453600000 590625 5600000 253125 48384

673 1 149 23 81 32 11
226800000 65625 75600000 1771875 2800000 590625 72576

Similarly, the expressions X,;,,=¥E are simplified to determine the unknown coefficients of the higher derivative

X in equations (2.6) and (2.7) as

7297 16159 17483 649 201 1328 205
1620000 354375 22680000 354375 70000 354375 36288
8563 119 409 52 129 104 5
Xy 45360000 | (X 50625 | (Xis 6480000 | (X 354375 |(Xis 560000 | (Xieo 354375 | (X 10368
X 302429 || 8467 || x 197611 ||y 7193 || x 26619 || ¢ 7568 | | x 2039
111 121 131 141 - 151 161 171 —_—
< 15120000 || 236250 | | 15120000 | | 236250 || y 560000 || 118125 || 24192
w | | 732233 w | | 323 12 3233 w2 3677 152 5493 162 10288 172 1675
Xua || 4536000 | (Xum |_| 70875 | | X |_| 324000 || e 70875 || Xuso|_| 56000 || Xwa|_| 70875 || X |_| o072 |
X114 37631 X124 L X134 —_ 29843 XlAA — A X154 in XlGA ﬂ X174 %
Xue| | “11gaps || X | | T1e12s || Xwe| | 7sgoo00 || X | | 1zg1zs || X | | 20000 ||| | 118125 || X | | 12008
X, 20609 Xy) | 83 X)) | 13169 | \X) | 307 |(X) | 627 |(Xy 104 X1 3035
45360000 708750 45360000 708750 560000 50625 72576
1201 1 23 23 33 16 7
22680000 50625 708750 354375 280000 354375 2592
5311 1466 4183 ) 149 o 55
67200 4725 604800 - 22400 -— 2688
55 a1 13 528 13 4725 55
Xo10 24192 X2 700 Xos0 22400 Xouo 3780 Xaso 22400 | (X6 38 Xoro 24192
Xon - % Xon % Xzt % Xon 167 o™ % Xoe1 % Xon %
Xon 44797 Xz 68 Xos 9077 Xosz 2100 | | Xos, 4807 Xae2 138 Xon 2725
X X o> | | X —oo | X 1172 || x o200 || X 525 || x EYITY
as|_| 604800 | | Xas|_| 525 | | Xow | | 67200 | | Xass|_| 2200 || Xeso || 22400 || Xoes || g5a | | Xe |_| 24192
X21A 7ﬁ XZZA ﬁ X23A — 20227 XZAA 167 X254 ﬂ X264 4725 X274 ﬁ
Xo1s fgggo X5 18%%0 Xoss 6361:?00 Xous m Xoss 2220?90 Xaes @ Xors 2165858
Xao 67200 | | X% | | Tsa5 | | Xme 67200 | | X | |- || X=e | | 22400 || Ko 3% || X | | 2688
X217 _ 2999 X227 29 X237 _ 191 X2A7 5125 X257 _ 149 X257 % X277 7345
604800 2100 67200 — 22400 8 24192
13 8 191 3780 13 -— 53
— 0 4725 =
22400 4725 604800 22400 896

3. Analysis of new LBA Scheme

The new third-derivative LBA were numerically analyzed. These analyses are order and error constants,

consistency, Zero-stability, Convergent and region of absolute stability.

3.1. Order and Error Constant of LBA Scheme

Using the corollary 3.1 and corollary 3.2 to obtained the order and error constant of new LBA scheme.

Corollary 3.1

The linear operator L[p(&, ;h] associate with the local truncation error of the LBA defined in (2.5) and its higher
derivatives (2.6) and (2.7) is given as

Coah®p%(&,)+0(n"), Ceh™p™(&,)+0(n°), Coeh®p*(&,)+0(h™)
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Proof

The linear difference operators associated with (2.5) to (2.7) are given by

EETAT
) 1, 5 0 p3
L[p(égn )'h]:pn,l = Pn +ghpn* Y p"y—h Aw'gni +A11|9"£ +ARY, Jr/\13‘9"+1 JrAmlgmg JrAls‘gmg +A16'9n+£ A8
5 : 5 5 5 5 5 5
24
) 2, 5 w o s
L[P(én),h]=pnig ~Phn +§h,0 n_TP L Azolgnig +A213nl +A 9, +A23‘9n+1+A24‘9mg +A25‘9n+§+/\ze‘9n+g +A xS
5 : 5 5 5 5 5 5

i

oy

2, 5

L[p(én);h]:pnﬁ ~Pn _ghpn_ ha(A4 Y +A41L9n 2 ALY, +A43‘9 1 +A ‘9n 2 +A45‘9 3 +A46‘9 4 +A47‘9n+1]
5

h3 1 +A31'9 2 +A3219 +A33'9 1 +A3419 2 +A35'9 3 +A3619 4 +A37'9n+1]
n n— N+ A N+

5 5 5

1
Lp(& kh]=p_ s =po=che',-
5

§h 2
) 3., 5 3
L[p(fn),h]:pﬁfpnfghpnf =" Ag o 1+A51L9n 2+A52‘9 +Asz‘gn 1+A54‘9 2+A55L9n erAsel9 4+A57'9n+l
5

(3.1)

ﬂh 2

) 4. 5 3

L[p(én ),h]=pn+§ ~Phn —ghp n '»—h Aeo'-qn 1 +Ae1’9 2 +A62’9 +A53‘9n 1 +As4’9 2 +A65’9 3 +Aes‘9n s T A
5

()
Lo kh]= pors = P —hp' - (2)| pUy—h? [Am‘gni +A7119n73 +ARS, + A73‘9n+3 + Amlgmg + A75l9n+§ + A7e‘9n+g + AWSMJ
: 5 5 5 5 5 5

L[p'(&, )h]= p'nfé_pl'ﬁ%h p",—h? f[XMOSn% + Xmgn% + X508, + Xm‘gmé + X““‘gwé + memg + Xuegmg + Xmgm]
L[p'(&, )h]= p'n% —p'n+§h py—h? (Xm‘gmg + xmsn% + X8, + xmsmé + X““‘gmg + Xmgmg + xmsn% + XmSMJ
Llp'(&, )h]= p'n% —p'n—%h py—h? [xmgn% + Xmgn% + X5 8, + Xmgn% + Xmgmg + X135'9n+§ + Xm&mg + X379
Llp'(& kh]=p" —p'n—g hp''y=h?| Xugd  + X089 5+ Xip8 +Xp8 1 + X008 5 +Xpe8 5+ X068 4 + Xy 90

s 5 5 5 5 5 E

(e ) . 3
L[P (‘fn ), h] =p e P 75 h P n 7h2 [Xlso‘gnl + X151'9n,3 + X152"9n + X153‘9n+3 + X154‘9n+g + X155‘9n+§ + X156‘9n+£ + X157‘9n+1j
5 5 5 5 5 5 5

. . 4
L[p (§n ); h] =p et P 5 hp", —h? [Xmo’gni + XlGlgnig + X + X153'-9n+1 + X164'-9n+g + X165’9n+§ + Xlss'-gmg + X ha
5 5 5 5 5 5 5

Lp'(&, )rh]=p'hu—p = p",—h? {Xﬂogni+Xml9n£+Xm,9n+X1739n+1+X174‘9n+3+X1753M§+X178‘9Mi+Xm‘9"+1j (3.2)
5 5 5 5 5 5
Lo (&, kh]=p 'n,z Py h( 209 1+X211.9 2+Xm.9 + X8 1+X2149 z+x2159 3+X2163 4+X2179MJ
Llp"(&, )h]=p h(x220 RS UIPED SHUEDS SHUITES CHUIPED SRR e +X2279m]
5 5 5 5 5

Llp" (&, kh]=p h[Xm . +X231L9n£ + X5, +Xmgm1 +X234.9mZ +X235.9m§ +Xosd 4 +X237‘9M]

Lp" (& rh]=p h(x240 1+ X 2+xml9 + X 1+x244,9 2+><245[9 3+x2465« 4+x247‘9m]

Lp (& )hl=p : h(Xst XS, +x2523 + X8 1+x2549 +x2559 3+x2563 4+x257!9m]

Llp"(&, )h]=p h[x260 X8, +X252.9 + X8 1+X2&,9 2 +X2559 3+X256.9 4+x26719n+1]

Lp"(& kh]=p"u—p", h[ w9 1+X2719 2+in9 + X8 1+sz9 2+X2753 3+X2768 4+X2773M] (3.3)

ISSN: 2582-398 [67] OPEN @ ACCESS



X

S Irish Interdisciplinary Journal of Science & Research (I1JSR)
M Volume 9, Issue 4, Pages 62-76, October-December 2025
Corollary 3.2

The local truncation error of (2.5) to (2.7) assume p(&) to be sufficiently differentiable and expanding equation

(3.1) to (3.3) about &, using a Taylor series to obtain

L ,[p(& ) h]=(~5.0968x10"2) L , [p(&, ) h]= (- 2.3806x10*) L, [o(&, ) h] = (- 2.9455x107*2)

L;E[P(én Jh]=(-1.9538x107") L, ;(ffn Jh]=(-4.4883x10") L, [;(fn ):h]=(~8.4586x10*)

,i[p(cfn); h]=(~1.3308x107°) g ’

L 1[P'(§n Jh]=(0.2176x10) L , [p'(£, )k h]=(~9.3009x107) L, [p"(&, ) h] = (- 4.7845x10°*)

L [p £ )h]=(-1.0384x10™), L;[p'(g‘n);h]:(—1.6800><10'1°), Lj[p‘(z:n);h]:(—1.8782><10‘“),
h)=(-

5 5

4.8501x10™)

L, [p"(& ) h]=(-1.0296x10") L 2[p"(gn);h]= (3.7610x10®) L, [p""(£, )k h] = (- 45616 x10™)
L;[p"(én Jih]=(~1.0384x10) L E[p £,)h]=(~5.6000x10™), L:[p"(gn Jih]=(~4.6956x107°),
Lf[p"(gn); h]=(-4.3210x10), 5 5

Proof

Expanding equations (2.5) to (2.7) using Corollary 3.2 and collect the like terms to get

L (ol )= (-5.096810 )07, )+ O™ ) L o6,k h]= (2380610 o™ (5, )+ ()

L[Pffn h]

(- 2.9455x1072 ) % p% (&, )+ 0(n™), L, [o(&, )k h]= (- 1.9538x 107 o ,gh™ p™ (&, ) + O(h™ ),
L [p £,)h]= (- 4.4883x10 o ,sh™ p™ (£, )+ 0(h™) L, [o(&, ) ] = (- 8.4586x 10 [ yuh® p% (&, )+ 0(n*),

Ll[p & ) h]=(~1.3308x10° I ,sh® p% (¢, )+ O(n™),
[p(&,)h]=(0.2176x10 ICosh® % (&, )+ O(n** ) L ,[0"(&, )k h]= (- 9.3009x10 2 o igh® p (£, ) + Oh'®),

Ll[p'(fn)h] (- 4.7845x107 Cygh® p% (£, )+ 0(h*° ), L, [p" (£, )h]
Ly[o'(&, ) h]= (-1.6800x10° Jc,sh™ p™ (£, )+ 0(h™°) L, [p"(£, )k h] = (- 1.8782x 10 Ioigh® p (&, ) + O(h'),
)

Li[P'(fn h]:( 4.8501x10 mk; hee p%( )+0(h1°),

(-1.0384x10™ Jc ™ p™ (&, )+ (™),

L, [p"(&, ) h]=(-1.0296x10 Jc,sh® % (&, )+ 0(h™) L 2[,o '(&,):h] = (3.7610x10% JCosh® p% (£, )+ 0(h* )
L, [o"(&,kh]= (- 4.5616x107 o ,sh™ o™ (&, )+ 0(h* ) L, [ |_2 "(& )h]=(~1.0384x107° )c ,,h® p% (&, )+ 0(h™),
Ly[o""(&,kh] = (-5.6000x10™° Jc,,n% % (&, ) + 0(h°9)|_[p (&) h]= (- 4.6956x107° Jcigh®™p® (£, )+ 0(h* )

L[p" (& )h]= (- 4.3210x 10" Jc,h® p™(&, )+ 0(h™),
3.2. Consistency of LBA Scheme

Definition 3.1: Given the new numerical scheme, the first and second characteristic polynomials are defined as,
k .

o(2) =ZajZ’ (3.4)
j=0
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o(2) =iﬂ’jzj (3.5)

where Z is the principal root, ¢, #0 and a§+ﬁ02 #0. The new numerical scheme is said to be consistent if it

satisfies the following conditions;

1) the order p>1,
k

2) Zajzo,and
j=0

3) pW=0()

According to definition 3.1, a LBA is consistent since it is of uniform order eight. Therefore, the LBA satisfies this

condition and is deemed consistent.
3.3. Zero Stability of LBA Scheme

A LBA Scheme is said to be Zero-stable for any well behaved problems provided if

1) all roots of p(r) lies in the unit disk,

r<1
2) any roots on the unit circle Qr| < 1) are simple.

Hence

p(u) 91674240 u -1068480 U’ + 4689496 u® + 46746 u* + 26397 u® + 7687598 u°®

= 3.6
58060800 -14515200 u + 604800 u® +151200 u® -15120 u* - 630u° +135u°® + 21457 u’ (39)

Therefore, equating (3.6) equal to zero and solving for U gives u=1, hence the LBA scheme is zero-stable.
3.4. Convergence of LBA Scheme

By Dahlquist theorem, the necessary and sufficient conditions for LBA scheme to be convergent is that it must be
consistent and zero-stable (Sabo & Adeyeye, 2025). Therefore, the new LBA scheme is convergent, since it

consistent and zero-stable.
3.5. Region of Absolute Stability (RAS) of LBA Scheme

To determine the regions of absolute stability of new LBA scheme, a method that requires neither the computation
of roots of a polynomial nor solving of simultaneous inequalities was adopted. This method is called the Boundary
Locus Method (BLM). The boundary locus method was used to obtained the stability polynomial of LBA scheme

as

B 41343750000 T 200037600000000 41343750000 4 27562500000
54159020459 6 893657 7\ s 611966338171 s 485227 7 ),a
+ 7+ 7' |h°+ s 7' |h
6001128000000000 74418750000 2400451200000000 2205000000
( 11944063 , 1577 7jh3+[_ 13697597 , 529391 7jh2+[ 3, 3 7j .

H(;z)=( 3151 , 10411663 ”5]h7+(_ 5358324793 , 16453 ”7th o

= T+ T
84672000000 1323000000 483840000 17640000
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Using the stability polynomial in equation (3.7) on Matlab R2024a, we obtained the RAS of LBA scheme as

4
/ /\
3
2
1
e
g
g o
S
8
: \
-1
2
3
\J
-4
-9 -8 7 6 5 -4 3 2 -1 0

Real(u)

Figure 3.1. Regions of absolute stability of LBA scheme
4. Numerical Simulation

The new LBA scheme was applied on Volterra integro-differential equations of second kind and the results are

numerically tabulated and textually shown to compare the results with the existing methods.
Example 4.1

Consider the Volterra integro-differential equation of the form

p'(&)=—sin(&)-cos(&)+ jj 2cos(& —7)p(r)dz, p(0)=1,0<£<5 (4.1)
with exact solution given as

pl§)=ep(-¢) (42)
Source: See [Chen & Zhang, (2011); Faires & Burden, (2015); Majid & Mohamed, (2019)]
Example 4.2

Consider the Volterra integro-differential equation of the form

(&)= ol ple) & [ ol e P01 a9

with exact solution given by

ple)=— (4.4)

Source See: [Faires & Burden, (2015); Majid & Mohamed, (2019)]
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Example 4.3

Consider the nonlinear Volterra integro-differential equation of the form

p"(&)= @ exp(~ é)sin(é)—sin(é)j + [ exp(e)sin(€)o" (c)dz + p(&), p(0)=-1 p'(0)=1 (45)

with exact solution given by

pl§)=sin(¢)-cos(¢) (4.6)

Source See: [Kamoh et al. (2017)]

The following Acronyms were used in the tables and figures.

Acronyms  Meaning

& Points of Evaluation

ES Exact Solution

CS Computed Solution in LBA

ELBA Error in LBA

EABM5 Error in Fifth Order Adams-Bashforth-Moulton Predictor-Corrector Method of Faires &
Burden (2015)

E2P3B Error in Two Point Three-Step Block Method as in This Research of Majid & Mohamed,
(2019)

EGBDF5 Error in Combination of Boundary Value Methods and Fifth Order Generalized Backward
Differentiation Formula by Chen & Zhang, (2011)

ETR Error in Trapezoidal Rule using Three Quadrature Rules of Kamoh et al., (2017)

EGR Error in Gaussian Rule using Three Quadrature Rules of Kamoh et al., (2017)

ES13R Error in Simpsons 1/3 Rule using Three Quadrature Rules of Kamoh et al., (2017)

Table 4.1. Comparison Numerical Results of Example 4.1

£ ES CS ELBA EGBDF5  EABMS5 E2P3B

0.25 0.77880078307140486825  0.77880078307140486820  2.9820e-17  2.3922¢-02  8.1337e-03  6.1138 ¢-03

0.125 0.88249690258459540286  0.88249690258459540286  1.0000e-20  3.1790e-04  4.7616e-04  3.9009e-04

0.0625 0.93941306281347578612  0.93941306281347578612  0.0000e+00  4.3708e-06  2.1034e-06  1.6881e-05

0.03125  0.96923323447634408185  0.96923323447634408185  0.0000e+00  7.5567e-08  7.8509e-07  6.1208e-07

0.015625  0.98449643700540840599  0.98449643700540840599  0.0000e+00 - 2.6828e-08  2.0516e-08

0.0078125 0.99221793826024351211  0.99221793826024351211  0.0000e+00 - 8.7684e-10  6.6334e-10
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Table 4.2. Comparison Numerical Results of Example 4.2

5 ES Cs ELBA EABM5 E2P3B
0.025 0.97560975609756097561 0.97560975609756028764 6.8797e-16 1.7212e-08 8.3237e-08
0.0125 0.98765432098765432099 0.98765432098765423863 8.2360e-17 2.0551e-09 3.8384e-09
0.00625 0.99378881987577639752 0.99378881987577639193 5.5900e-18 1.9089e-10 2.0775e-10
0.003125 0.99688473520249221184 0.99688473520249221546 3.5600e-18 1.1926e-11 1.2654e-11
0.0015625  0.99843993759750390016 0.99843993759750390120 1.0400e-18 7.4529¢-13 9.6889¢-13
0.00078125  0.99921935987509758002 0.99921935987509758099 9.7000e-19 4.6518e-14 4.3676e-13
Table 4.3. Comparison Numerical Results of example 4.3
5 ES CS ELBAG6 ETR EGR ES13R
0.16 -0.82790907676138098573 -0.82790976676138098591 6.9000e-07 1.9000e-09 1.2512e-05 3.4135e-06
0.32 -0.63466885746632310092 -0.63466888990974523015 3.2443e-08 1.3900e-08 3.2919e-04 2.6456e-05
0.48 -0.42521574723780130526 -0.42521574489126308478 2.3465e-09 5.6600e-08 2.0860e-03 8.5434e-05
0.64 -0.20490031652190056171 -0.20490031092634578321 5.5956e-09 1.5330e-07 7.7089e-03 1.9242e-04
0.80 0.02064938155235734071 0.02064938023676800153 1.3156e-09 3.2662e-07 2.1169e-02 3.5240e-04
0.96 0.24567158222854160950 0.24567158258416091142 3.5562e-10 5.9210e-07 4.8093e-02 5.6512e-04
[ ELBA ====== EGBDF5 EABM5 === EZPSB[
Comparison of Numerical Errors for Example 4.1
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Figure 4.1. Graphical Curve of table 4.1
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Figure 4.2. Graphical Curve of table 4.2
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ELBA ====== ETR EGR =-O-- ESlSR{

Comparison of Error Values for Example 4.3
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Figure 4.3. Graphical Curve of table 4.3
25, Discussion of Results

The derivation of the new third-derivative Linear Block Algorithm (LBA) begins by applying Proposition 3.1,
which links the general linear multistep framework to the underlying block hybrid formulation. After deriving the
scheme, its numerical properties are analyzed: using Corollaries 3.1 and 3.2, the scheme is shown to have a uniform
order of eight, satisfying consistency requirements; zero-stability is verified by ensuring the roots of the
characteristic polynomial lie within the unit disk; and convergence follows directly from Dahlquist’s theorem.
Finally, the region of absolute stability is determined using the Boundary Locus Method and MATLAB
visualization confirms that the new LBA scheme possesses a robust stability region suitable for reliable numerical

integration.

The numerical results presented in Tables 4.1 to 4.3, together with Figures 4.1 to 4.3, provide a clear comparative
assessment of several numerical schemes applied to different VVolterra integro-differential equations. For Example
4.1, the results show that the Linear Block Approach (LBA) achieves excellent agreement with the exact solution
across all step sizes, as reflected in the extremely small ELBA values. The Generalized Backward Differentiation
Formula (EGBDF5) also performs remarkably well with errors close to machine precision. In contrast, the
Adams-Bashforth-Moulton method (EABM5) and the Two-Point Three-Step Block Method (E2P3B) display
higher error values, particularly for relatively large step sizes, although both methods exhibit consistent reductions
in error as the step size decreases. The plotted curve in Figure 4.1 highlights this trend, with the LBA and EGBDF5

curves nearly overlapping with the exact solution, while the other schemes converge more gradually.

In Example 4.2, the numerical comparison further reinforces the robustness of the LBA. The ELBA values remain
extremely small across all step sizes, approaching the level of round-off error. The competing methods, EABM5
and E2P3B, show larger but steadily declining error values as the step size decreases, confirming their convergence
but at a slower rate compared to the LBA. The closeness between the computed LBA solution and the exact
solution (CS and ES) underscores the suitability of the block method for mild kernel Volterra equations. Figure 4.2
clearly illustrates this superior performance, with the LBA curve essentially indistinguishable from the exact

solution, while EABMS5 and E2P3B track below with visibly larger deviations, especially at coarser step sizes.
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For Example 4.3, which involves a nonlinear Volterra integro-differential equation, the trend remains consistent
but with more pronounced differences among the methods. The ELBA errors demonstrate high accuracy of the
optimized block approach, although the increasing nonlinearity leads to slightly larger error magnitudes compared
to Examples 4.1 and 4.2. The trapezoidal rule (ETR), Gaussian rule (EGR) and Simpson’s 1/3 rule (ES13R),
applied using three-point quadrature, exhibit significantly larger error levels, particularly EGR and ES13R, whose
errors rise with step size due to their sensitivity to nonlinear integrands. Figure 4.3 visually confirms these
disparities: the LBA curve remains closest to the exact nonlinear solution, while the classical quadrature-based
methods diverge more noticeably. Overall, the tables and figures demonstrate the superior stability, accuracy, and

convergence properties of the LBA across both linear and nonlinear Volterra integro-differential equations.
# 6. Summary and Conclusion

This study focused on the development and analysis of a new third-derivative Linear Block Algorithm (LBA) for
solving Volterra integro-differential equations of the second kind. The method was derived using a generalized
linear multistep framework, supported by interpolation, collocation, and the use of a Computer Algebra System
(CAS) to obtain the continuous and discrete forms of the numerical scheme. Its fundamental numerical properties
order and error constant, consistency, zero-stability, convergence, and region of absolute stability were rigorously
established. The method was shown to possess a uniform order of eight and a stable characteristic polynomial,
confirming strong theoretical reliability. The region of absolute stability was obtained using the Boundary Locus
Method and visualized with MATLAB to further validate the method’s robustness.

The numerical experiments conducted using three benchmark Volterra integro-differential equations demonstrated
that the new LBA scheme consistently outperforms existing numerical methods, including Adams- Bashforth-
Moulton predictor—corrector methods, generalized backward differentiation formulas, block multistep schemes,
and standard quadrature rules. Results showed extremely small errors-often approaching machine precision—and
excellent agreement with the exact solutions for both linear and nonlinear problems. Overall, the newly developed
third-derivative LBA is efficient, accurate, and stable, making it a highly reliable tool for solving Volterra
integro-differential equations of the second kind. Its superior convergence and stability properties position it as a

valuable contribution to numerical analysis and computational mathematics.
7. Suggestion for Further Research
1) Optimized High-Order Linear Block Algorithms for Solving Volterra Integro-Differential Equations.

2) Adaptive Third-Derivative Block Methods for Nonlinear and Memory-Dependent Volterra Integro-Differential

Systems.
3) Linear block algorithm for numerical solution of Fredholm integral equations.
4) Numerical Scheme for the solutions of Volterra Fredholm-integral Equations.

5) Derivation of block hybrid method for solving Volterra-Fredholm Integro-Differential Equations.
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