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░ 1. Introduction 

The HIV/AIDS epidemic continues to pose a major global health challenge, affecting millions worldwide, with 

sub-Saharan Africa carrying the highest burden (WHO, 2021). Mathematical modeling has been instrumental in 

understanding HIV transmission dynamics and evaluating the impact of interventions. Initially, traditional models 

focused on the basic interactions among susceptible, infected and removed individuals. However, the advent of 

effective treatment and prevention measures such as Highly Active Antiretroviral Therapy (HAART), Pre- 

Exposure Prophylaxis (PrEP) and other antiretroviral drugs (ARVs) has shifted the focus toward incorporating 

these strategies into models as active control mechanisms. These treatments significantly reduce viral loads, 

prevent transmission and alter disease progression, particularly in regions with accessible healthcare (Johnson et 

al., 2020; Abdulla et al., 2020). Recent studies have shown that early and widespread treatment helps curb new 

infections and modifies the dynamics between infected and susceptible individuals, though access limitations in 

developing regions still hinder progress (Fitzgerald et al., 2022; Chun et al., 2021). 

Beyond capturing biological processes, mathematical models serve as vital tools for simulating transmission, 

evaluating “what-if” scenarios and informing effective public health policies (Khademi et al., 2018). These models 

assist in assessing the outcomes of various interventions such as condom use, mass treatment and education 

campaigns, even though they are constrained by assumptions and data uncertainties (NCDC, 2022). In Nigeria, the 

HIV epidemic followed continental trends, with high infection rates during the 1980s and 1990s driven by stigma, 

rapid urbanization and limited treatment access (Huo & Chen, 2015). The introduction of major initiatives like 

PEPFAR and the Global Fund in the 2000s expanded testing and antiretroviral therapy, leading to reduced 

incidence and mortality by the 2010s (CDC, 2023). However, persistent challenges such as cultural stigma and 
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inequitable healthcare access continue to emphasize the need for data-driven modeling to strengthen HIV control 

and prevention strategies. 

The spread of infectious diseases, particularly those with varying degrees of symptoms such as HIV, poses a 

significant challenge to public health systems globally. In their 2024 study, Odebiyu et al. formulated a 

susceptible-infectious (SI) model in which the infectious compartment was subdivided into asymptomatic and 

symptomatic populations. Their findings revealed that increasing the rate of detection through screening could help 

control the spread of the disease. While their model provides valuable insights into the role of detection and 

treatment in curbing transmission, it does not comprehensively address the dynamics of HIV transmission when 

screening are actively incorporated as control measures. In this model, this research was modified the model due to 

Odebiyu et al. (2024) by incorporate the exposed class asymptotic and symptotic classes and use treatment and 

removal as a dynamic control strategies.      

Screening and early diagnosis are foundational steps in managing HIV. Voluntary counseling and testing, guided 

by the WHO's five Cs-consent, confidentiality, counseling, correct results and connection to care are vital for 

initiating effective treatment (Granich et al., 2019; Gurmu et al., 2021). When combined with ART, early diagnosis 

significantly reduces community viral load, thus limiting transmission. Nevertheless, various challenges hinder the 

success of these strategies, such as poor access to healthcare, stigma, social discrimination and inadequate linkage 

to care (Arachchige, 2021). To maximize effectiveness, test-and-treat must be part of a broader prevention strategy 

that includes PrEP, condom distribution, education and harm reduction (Ayele et al., 2021). Recent models have 

expanded in scope to include demographic characteristics, treatment stages, disease progression and co-infection 

dynamics. Granich et al. (2019) and Nthiiri et al. (2015) presented compartmental models dividing populations into 

susceptible, infected and treated groups, capturing HIV transmission and ART impact. Further, Feldman et al. 

(2017), Khademi et al. (2018) and Nsuami & Witbooi (2018) highlighted bacterial co-infections, PrEP efficacy and 

combined interventions. Together, these studies underscore the multifactorial nature of HIV dynamics and affirm 

the value of mathematical modeling in crafting comprehensive, evidence-based public health strategies. 

Ayele et al. (2021) utilized mathematical modeling to tailor HIV/AIDS control strategies to the Ethiopian context, 

emphasizing the value of context-specific interventions in improving public health outcomes. Similarly, Gurmu et 

al. (2021) introduced a model incorporating optimal control strategies, highlighting the critical balance between 

prevention and treatment in minimizing HIV transmission. Arachchige (2021) proposed an innovative 

immunotherapeutic approach using CAR-NK cells to potentially eradicate HIV, signaling a shift beyond 

conventional ART towards curative treatments. Chukwu et al. (2022) examined HIV/AIDS-listeriosis co-infection 

dynamics, underscoring the importance of integrated management strategies for co-infections. Zhao et al. (2022) 

contributed to the field by applying fractional differential equations to model HIV dynamics, offering refined tools 

for capturing complex disease behavior. Chazuka et al. (2024) assessed the cost-effectiveness of various HIV 

control strategies, providing a financial framework for sustainable policymaking. Finally, Odebiyu et al. (2024) 

developed an SI model with asymptomatic and symptomatic compartments, concluding that enhancing detection 

rates through screening significantly curtails disease spread. 
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1.1. Study Objectives 

The objectives are: 

1) To establish the theorem of existence and uniqueness solution  of the model  and provide it prove, 

2) To establish the theorem of positivity and boundedness of the solution  and provide it prove, 

3) To obtain the disease free and endemic equilibrium points of the model, and 

4) To obtain the basic reproductive number. 

░ 2. Development of the Model 

Odebiyu et al. (2024) formulate a mathematical modelling on assessing the impact of screening on HIV/AIDS 

transmission dynamics. Certain assumptions were incorporated, parameters and variables were meticulously 

defined and the chapter introduces the model equation and methodology employed in the study. The existing model 

by Odebiyu et al. (2024) was formulated with four class of susceptible, symptomatic infectious, asymptomatic 

compartmental and AIDS population.  

2.1. Modified Model 

This section presents a formulation of the mathematical modeling approach for understanding the transmission and 

spread of HIV/AIDS. The new model was modified due to Odebiyu et al. (2024) by incorporate the exposed class, 

asymptotic and asymptotical classes and use treatment and removal as a dynamic control strategy. 

2.2. Variables and Parameters of the Modified Model 

Table 2.1. Variables and their Meaning of the Modified Model 

Variables Meaning 

 tS  Susceptible population at a time t 

 tE  Exposed population at a time t 

 tI A  Asymptomatically infected population at a time t 

 tIS  Symptomatic infected population at a time t 

 tA  Population of people with AIDS at a time t 

 tT  Treated individuals at a time t 

 tR  Removal  individuals at a time t 

 

Table 2.2. Parameters and their Meaning of the Modified Model 

Parameter Meaning 

  The recruitment rate 

  Natural mortality rate 

  Contact rate between AI , SI  and susceptible population 

D Death due to sickness 

B Rate of transfer from susceptible class to exposed class 
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  Rate of movement from exposed class of asymptomatically infected classes 

1  Probability of people moved from exposed class of symptomatically infected classes 

  transfer rate from asymptomatically infected class 

  Rate of movement from symptomatically infected classes to AIDS compartment 

  Rate of transfer of individuals from exposed class to symptomatic infected individuals class  

  Rate of movement from asymptomatic infected individuals class to AIDS class 

  Movement rate from AIDS compartment to Treatment class 

  Propagation rate from symptomatically infected class to removed class 

  Movement rate from treatment class to removed class 

  Movement rate from symptomatically infected class to treatment compartment 
 

2.3. Assumptions for the Modified Model 

The following assumptions were made for the modified model: 

1) There is natural death in all the compartments, 

2) If susceptible population come in contact into infected, there is exposure, 

3) Individuals can be infected asymptomatically or symptomatically, 

4) Asymptomatically and symptomatically infected individuals can be moved to AIDS compartment when the 

sickness worsens, 

5) It is possible for individuals to be removed or removed when treated.  

2.4. Formulation of the Modified Model 

The modified mathematical modelling of HIV/AID is divided into seven compartments and each compartment has 

it its variables and parameters. The susceptible compartment signify  tS  increase by the recruitment rate   and 

decreases by  SIIb SA   and S  to form a differential equation of the for  

  SSIIb
dt

dS
SA            (2.1) 

The exposed compartment denote by  tE . The compartment increase by  SIIb SA   and decreases by 

 E1 . The differential equation is given by  

   ESIIb
dt

dE
SA   1          (2.2) 

The Asymptomatically infected population denotes  tI A . It increase by  E  and decreases by AA II  ,  and 

  AId  based on the increase and decrease, the differential equation is 

  AAA
A IdIIE

dt

dI
         (2.3) 



Irish Interdisciplinary Journal of Science & Research (IIJSR)  

Volume 9, Issue 4, Pages 16-31, October-December 2025 

ISSN: 2582-3981                                                                   [20]                                                                             

The Symptomatically infected compartment  tIS  increases by  E1  and AI , it also decreases by 

SSS III  ,,   and   SId  with the equation 

    SSSSA
S IdIIIIE

dt

dI
 1           (2.4) 

The AIDS compartment denotes  tA , increases by SI and SI , decreases by A   and  Ad . Its differential 

equation is of the form 

 AdAII
dt

dA
AS           (2.5) 

The treated compartment  tT  increases by AI S  ,  and decreases by  TdT  ,  to form a differential 

equation  

 TdTAI
dt

dT
S           (2.6) 

The Removed compartment signify  tR  increases by SI , T  and decrease by R . The differential equation is 

given by 

RTI
dt

dR
S                (2.7) 

Based on the model assumptions and formulation, the schematic diagram of the modified model are presented as 

 

Figure 2.1. Schematic diagram of modified model 
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The model equations were derived from figure 2.1 and presented in equation (2.8) as 

 

   
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dt
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TdTAI
dt
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AdAII
dt
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IdIIIIE
dt

dI

IdIIE
dt

dI
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dt

dE

SSIIb
dt

dS

S

S
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SSSSA
S
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A
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













1

1

      (2.8) 

░ 3. HIV/AIDS Model Analysis 

Model analysis encompasses a range of methods used to explore and understand the behavior and properties of 

mathematical or computational models, such as those describing the dynamics of HIV/AIDS. It is a fundamental 

tool across fields like engineering, physics, biology and economics, where models are used to represent complex 

systems. Key components of this analysis include assessing the Existence and Uniqueness of the Solution, 

positivity of solutions, identifying disease-free and endemic equilibrium states and determining the basic 

reproduction number. 

3.1. Existence and Uniqueness of the Solution 

If  ytf ,  has continuous partial derivative 

i

i

y

f




 for ni ,,2,1   on a bounded convex domain R , then it 

satisfies a Lipchitz condition in R ,     ,3,2,1,,, 11   iyykytfytf nnn  

The existence and uniqueness of the solution is explained using the theorem 3.1. 

Theorem 3.1 

There exist a domain D in which the solution set  RTAIIES SA ,,,,,,  is contained and unique. 

Proof: 

Given that the solution set with positive initial condition  

              0000000 0,0,0,0,0,0,0 RRTTAAIIIIEESS SSAA  , we let   

               tRtTtAtItItEtSRTAIIES SASA ,,,,,,,,,,,,  . The derivative 
dt

dm
 along solution of the 

system (2.1) is obtained by  
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dt

dR

dR

dm

dt

dT

dT

dm

dt

dA

dA

dm

dt

dI

dI

dm

dt

dI

dI

dm

dt

dE

dE

dm

dt

dS

dS

dm

dt

dm S

S

A

A

    (3.1) 

It follows that  

m
dt

dm
        (3.2) 

Solving the differential inequalities, we have 

    t

SA

t eRTAIIESme
dt

dm 



 


 0000000 ,,,,,,1      (3.3) 

Hence, taking the limit as t  gives 





 . 

Thus all the solution are contained in the modified model exists and is given by  







 

 


NRTAIIESD SA :,,,,,, 7

0000000            (3.4) 

This ends the prove.  

3.2. Positivity and Boundedness of Solution   

To establish the positivity of the model's solution, it is necessary to verify that all population compartments are 

non-negative. Ensuring non-negative values is essential, as negative population sizes are not physically 

interpretable. This property was demonstrated by providing the proof to theorem 3.2. 

Theorem 3.2 

Let the initial solution set be   7

0000000 0,0,0,0,0,0,0  RRTAIIES SA
  

Then the solution set               tRtTtAtItItEtS SA ,,,,,,  is positive for all 0t . 

Proof 

  SSIIb
dt

dS
SA    

i.e   SIIb
dt

dS
SA          (3.5) 

Since we are considering only the negative terms susceptible population S , then 

  SIIb
dt

dS
SA            (3.6) 

This results to 
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 S
dt

dS
            (3.7) 

Where 

  SA IIb             (3.8) 

Solving for (3.7) by separating the variables, we have 

 dt
S

dS
              (3.9)  

Integrating (3.9) we have 

   dtS   ln         (3.10) 

i.e     CtS  ln       (3.11) 

Taking the exponential of (3.11) 

    CtetS  
          (3.12) 

i.e     Ct eetS   
       (3.13) 

   tKetS            (3.14) 

Where  

i.e 
CeK               (3.15) 

Applying the initial conditions at i.e 0t , equation (3.14) becomes 

   0 KetS           (3.16) 

  KS 0              (3.17) 

Substituting (3.15) into (3.12), we have 

      00   teStS 
       (3.18) 

For all 0t    

In a similar way, we can text the positivity of the remaining variables. 

3.3. Disease Free Equilibrium (DEF) of the Model 

The Disease-Free Equilibrium (DFE) refers to a condition where the entire population (2.1) is uninfected, with all 

compartments associated with infection set to zero. To find this state, the derivatives of the infected variables are 

equated to zero under the assumption of no disease presence. This means that 0 RTAIIE SA . 
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Theorem 3.3 

A disease-free equilibrium state of the model (2.1) exist at a point  

  






 
 0,0,0,0,0,0,,,,,,, 0000000

0


RTAIIESE SA
. 

Proof: 

Let   0000000 ,,,,,,,,,,,, RTAIIESRTAIIES SASA   be at equilibrium state. 
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 

 
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Similarly, 0 RTA . 

  






 
 0,0,0,0,0,0,,,,,,, 0000000


RTAIIES SA  

3.4. Endemic Equilibrium Point of the Model 
E  

The endemic equilibrium point of the model (2.1) is the point where  

0,0,0,0,0,0,0  RTAIIES SA . 

Theorem 3.4 

The HIV presence/Endemic equilibrium point is  

   RTAIIESE SA ,,,,,,  
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3.5. Basic Reproduction Number  0R  

The Basic Reproduction Number, often denoted as 
0R , is a key epidemiological metric that indicates the average 

number of secondary infections caused by one infected individual in a fully susceptible population. This number 

depends on factors such as contact rate, transmission probability and the infectious period.  



Irish Interdisciplinary Journal of Science & Research (IIJSR)  

Volume 9, Issue 4, Pages 16-31, October-December 2025 

ISSN: 2582-3981                                                                   [26]                                                                             

To find the basic reproduction number, 0R , for the model equation (2.1), we use the next-generation matrix 

approach, which involves linearizing the model around the Disease-Free Equilibrium (DFE). The infected 

compartments are        tTtAtItE S ,,,  with the relevant equations 
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At the DFE, the susceptible population S  are at their equilibrium values  
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and Transition Matrix  V  
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The 

next-generation matrix G  of the F  (new infection terms) and V  (transition terms) is given by: 

1 VFG  

To calculate G we first need to find the inverse of V  as 
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The basic reproduction number 0R  is the spectral radius (dominant eigenvalue) of the next-generation matrix G . 

1 VFG  as  

G  

0 zIG  as  

  

The determinant is given by  

 

Solving for z, we have  
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From the structure, the eigenvalues are the entries: 
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░ 4. Discussion of Results 

A comprehensive analysis of the Modified HIV Model (equation 2.1), emphasizing theoretical proofs and 

numerical illustrations to validate the model's behavior. The analytical exploration begins with the examination of 

the existence and uniqueness of the solution, where Theorem 4.1 confirms that the model possesses a unique 

solution within a defined domain. This foundational result ensures that the model is well-posed and reliable for 

further analytical and numerical investigation. The proof, based on differential inequalities and bounded growth of 

solutions, validates that solutions remain within a biologically meaningful region. 

The positivity and boundedness of the solutions were established next, a critical step in epidemiological modeling. 

It confirms that each compartment (e.g., susceptible, exposed, infected, etc.) maintains non-negative values 

throughout the simulation. Negative populations have no physical meaning, so proving positivity via separation of 

variables and integration ensures biological relevance. The exponential nature of the solution form shows how 
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population levels evolve over time while remaining within realistic limits. The model further guarantees that the 

spread of HIV and related interventions can be accurately studied without risk of computational anomalies such as 

negative or infinite values. 

In evaluating the Disease-Free Equilibrium (DFE), the system is linearized under the condition that no infection is 

present in the population. This theoretical state helps to analyze the stability of the model when no HIV exists. 

From this, the Endemic Equilibrium (EE) is derived, where the disease persists at a steady state. This equilibrium 

point is critical in determining whether HIV will die out or become permanently established. These equilibrium 

analyses form the basis for calculating the basic reproduction number 0R . 

The basic reproduction number 0R  is derived using the next-generation matrix method, which captures how new 

infections propagate from existing ones. This method involves computing Jacobian matrices of new infection and 

transition terms and taking the spectral radius of their product.  

░ 5. Summary and Conclusion 

This study developed and analyzed a modified mathematical model for HIV transmission dynamics, incorporating 

treatment and removal as active control strategies. Building upon the foundational work of Odebiyu et al. (2024), 

the model introduced additional compartments for exposed individuals, asymptomatic and symptomatic infections, 

treatment and removed classes. The primary aim was to offer a more comprehensive depiction of HIV progression 

and control dynamics. 

The research began by establishing the existence and uniqueness of the solutions of the model, positivity of the 

model's solutions, ensuring all population compartments (susceptible, exposed, infected, treated, etc.) remained 

non-negative over time. The Disease-Free Equilibrium (DFE) was then derived, indicating a steady state where 

HIV is absent from the population and endemic equilibrium point. The local stability of this equilibrium was shown 

to depend on the basic reproduction number, which was computed using the Next Generation Matrix method.  

The results of this study affirm the effectiveness of incorporating treatment and removal as control mechanisms in 

HIV modeling. Through mathematical formulation and analysis, the modified model provides insights into how 

early detection, treatment adherence and removing individuals from the infectious pool through recovery or death 

can reduce the spread of HIV.  

░ 6. Suggestions for Further Studies 

To enhance and refine the findings of this study, future research could consider the following directions: 

1) Extending the model to include co-infections such as HIV-TB or HIV-syphilis dynamics. 

2) Incorporating stochastic elements to capture uncertainties in transmission rates and treatment response. 

3) Calibrating the model with real-world data from high-prevalence areas to improve the predictive power. 

4) Exploring cost-effectiveness analyses to determine optimal allocation of limited healthcare resources. 

5) Modeling the impact of emerging technologies such as long-acting injectable and HIV vaccines when they 

become available. 



Irish Interdisciplinary Journal of Science & Research (IIJSR)  

Volume 9, Issue 4, Pages 16-31, October-December 2025 

ISSN: 2582-3981                                                                   [29]                                                                             

Declarations 

Source of Funding 

This study received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.  

Competing Interests Statement 

The authors declare that they have no competing interests related to this work.   

Consent for publication 

The authors declare that they consented to the publication of this study.  

Authors' contributions   

All the authors took part in literature review, analysis, and manuscript writing equally.    

Availability of data and materials 

Supplementary information is available from the authors upon reasonable request.  

Institutional Review Board Statement 

Not applicable for this study.   

Informed Consent  

Not applicable for this study.  

 

References 

Abdulla, J.M., Mustapha, K., & Adebola, S.I. (2020). Mathematical modeling of HIV/AIDS transmission 

dynamics: The role of treatment strategies. Journal of Applied Mathematics and Computational Science, 45(3): 1–

15. https://doi.org/10.1016/j.matpr.2019.12.026. 

Arachchige, A.S. (2021). A universal CAR-NK
 
cell approach for HIV eradication.

 
AIMS Allergy and Immunology, 

5(3): 192–204. https://doi.org/10.3934/allergy.2021015. 

Ayele, T.K., Goufo, E.F.D., & Mugisha, S. (2021). Mathematical modeling of HIV/AIDS with optimal control: A 

case study in Ethiopia. Results in Physics, 26: 104112. https://doi.org/10.1016/j.rinp.2021.104112. 

Chazuka, Z., Chinwendu, E.M., & Mathebula, D. (2024). Modelling and analysis of an HIV model with control 

strategies and cost-effectiveness. Results in Control and Optimization, 100355: 1–22. https://doi.org/10.1016/j. 

rico.2024.100355. 

Chukwu, C., Juga, M., Chazuka, Z., & Mushanyu, J. (2022). Mathematical analysis and sensitivity assessment of 

HIV/AIDS-listeriosis co-infection dynamics. International Journal of Applied and Computational Mathematics, 

8(5): 1–21. https://doi.org/10.1007/s40819-022-01300-2. 

Chun, H.T., Kavanagh, J.R., & Lee, S.M. (2021). Impact of antiretroviral treatment and removal of infected 

individuals in HIV transmission models. Mathematical Biosciences, 265: 1–12. https://doi.org/10.1016/j.mbs.202 

1.108391. 



Irish Interdisciplinary Journal of Science & Research (IIJSR)  

Volume 9, Issue 4, Pages 16-31, October-December 2025 

ISSN: 2582-3981                                                                   [30]                                                                             

Feldman, C., Anderson, R., & Rossouw, T. (2017). HIV-related pneumococcal disease prevention in adults. Expert 

Review of Respiratory Medicine, 11(3): 181–199. https://doi.org/10.1080/17476348.2017.1285694. 

Fitzgerald, T.W., Maxwell, E.F., & Hesse, L.E. (2022). Evaluating the role of pre-exposure prophylaxis in reducing 

HIV transmission: A mathematical approach. Infectious Disease Modelling, 7(2): 89–101. https://doi.org/10.10 

16/j.idm.2022.01.004. 

Granich, R.M., Gilks, C.F., Dye, C., De Cock, K.M., & Williams, B.G. (2019). Universal voluntary HIV testing 

with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: A mathematical model. 

The Lancet, 373: 48–57. https://doi.org/10.1016/s0140-6736(08)61697-9. 

Gurmu, E.D., Bole, B.K., & Koya, P.R. (2021). Mathematical modelling of HIV/AIDS transmission dynamics with 

optimal control strategy. International Journal of Mathematics and Computational Research, 9(4): 37–54. 

Huo, H.F., & Chen, R. (2015). Stability of an HIV/AIDS treatment model with different stages. Discrete Dynamics 

in Nature and Society, Pages 1–9. https://doi.org/10.1155/2015/503195. 

Johnson, S.A., Marshall, M.E., & Smith, R.K. (2020). The impact of antiretroviral therapy on HIV transmission 

dynamics: A model-based study. Epidemiology and Infection, 148: e207. https://doi.org/10.1017/s0950268820 

001761. 

Khademi, F., Yousefi-Avarvand, A., Sahebkar, A., Ghanbari, F., & Vaez, H. (2018). Bacterial co-infections in 

HIV/AIDS-positive subjects: A systematic review and meta-analysis. Folia Medica, 60(3): 339–350. https://doi. 

org/10.2478/folmed-2018-0022. 

Nsuami, M.U., & Witbooi, P.J. (2018). A model of HIV/AIDS population dynamics including ARV treatment and 

pre-exposure prophylaxis. Advances in Difference Equations, 2018: Article 1. https://doi.org/10.1186/s13662-018- 

1505-4. 

Nthiiri, J.K., Lawi, G.O., & Manyonge, A. (2015). Mathematical model of pneumonia and HIV/AIDS co-infection 

in the presence of protection. International Journal of Mathematical Analysis, 9: 2069–2085. 

Odebiyi, O.A., Oladejo, J.K., Elijah, E.O., Olajide, O.A., Taiwo, A.A., & Taiwo, A.J. (2024). Mathematical 

modeling on assessing the impact of screening on HIV/AIDS transmission dynamics. Journal of Applied Sciences 

and Environmental Management, 28(8): 2347–2357. https://doi.org/10.4314/jasem.v28i8.22. 

Centers for Disease Control and Prevention (CDC) (2023). HIV basics: Overview about HIV/AIDS. U.S. 

Department of Health & Human Services. https://www.cdc.gov/hiv/basics/overview.html. 

Owebor, K., Diemuodeke, E.O., Briggs, T.A., & Imran, M. (2021). Power situation and renewable energy 

potentials in Nigeria – A case for integrated multi-generation technology. Renewable Energy, 177: 773–796. 

https://doi.org/10.1016/j.renene.2021.06.017. 

Kolonko, L., Maus, G., Velten, J., & Kummert, A. (2024). Early promotion of academic education through 

practical courses in the context of smart IoT systems. In 2024 IEEE 67th International Midwest Symposium on 

Circuits and Systems, Pages 1413–1417, IEEE. https://doi.org/10.1109/mwscas60917.2024.10658707. 



Irish Interdisciplinary Journal of Science & Research (IIJSR)  

Volume 9, Issue 4, Pages 16-31, October-December 2025 

ISSN: 2582-3981                                                                   [31]                                                                             

Wray-Lake, L., & Ballard, P.J. (2023). Civic engagement across adolescence and early adulthood. In L.J. Crockett 

et al. (Eds.), APA handbook of adolescent and young adult development, Pages 573–593, American Psychological 

Association. https://doi.org/10.1037/0000298-035. 

Nigeria Centre for Disease Control (NCDC) (2022). National HIV/AIDS strategic framework (2022–2026): 

Ending AIDS as a public health threat in Nigeria. Abuja: NCDC. https://ncdc.gov.ng. 

World Health Organization (WHO) (2021). Global HIV & AIDS statistics fact sheet. World Health Organization. 

https://www.who.int/news-room/fact-sheets/detail/hiv-aids.   

 

 


