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ABSTRACT

1. Introduction

The HIV/AIDS epidemic continues to pose a major global health challenge, affecting millions worldwide, with
sub-Saharan Africa carrying the highest burden (WHO, 2021). Mathematical modeling has been instrumental in
understanding HIV transmission dynamics and evaluating the impact of interventions. Initially, traditional models
focused on the basic interactions among susceptible, infected and removed individuals. However, the advent of
effective treatment and prevention measures such as Highly Active Antiretroviral Therapy (HAART), Pre-
Exposure Prophylaxis (PrEP) and other antiretroviral drugs (ARVS) has shifted the focus toward incorporating
these strategies into models as active control mechanisms. These treatments significantly reduce viral loads,
prevent transmission and alter disease progression, particularly in regions with accessible healthcare (Johnson et
al., 2020; Abdulla et al., 2020). Recent studies have shown that early and widespread treatment helps curb new
infections and modifies the dynamics between infected and susceptible individuals, though access limitations in
developing regions still hinder progress (Fitzgerald et al., 2022; Chun et al., 2021).

Beyond capturing biological processes, mathematical models serve as vital tools for simulating transmission,
evaluating “what-if” scenarios and informing effective public health policies (Khademi et al., 2018). These models
assist in assessing the outcomes of various interventions such as condom use, mass treatment and education
campaigns, even though they are constrained by assumptions and data uncertainties (NCDC, 2022). In Nigeria, the
HIV epidemic followed continental trends, with high infection rates during the 1980s and 1990s driven by stigma,
rapid urbanization and limited treatment access (Huo & Chen, 2015). The introduction of major initiatives like
PEPFAR and the Global Fund in the 2000s expanded testing and antiretroviral therapy, leading to reduced
incidence and mortality by the 2010s (CDC, 2023). However, persistent challenges such as cultural stigma and
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inequitable healthcare access continue to emphasize the need for data-driven modeling to strengthen HIV control
and prevention strategies.

The spread of infectious diseases, particularly those with varying degrees of symptoms such as HIV, poses a
significant challenge to public health systems globally. In their 2024 study, Odebiyu et al. formulated a
susceptible-infectious (SI) model in which the infectious compartment was subdivided into asymptomatic and
symptomatic populations. Their findings revealed that increasing the rate of detection through screening could help
control the spread of the disease. While their model provides valuable insights into the role of detection and
treatment in curbing transmission, it does not comprehensively address the dynamics of HIV transmission when
screening are actively incorporated as control measures. In this model, this research was modified the model due to
Odebiyu et al. (2024) by incorporate the exposed class asymptotic and symptotic classes and use treatment and

removal as a dynamic control strategies.

Screening and early diagnosis are foundational steps in managing HIV. Voluntary counseling and testing, guided
by the WHO's five Cs-consent, confidentiality, counseling, correct results and connection to care are vital for
initiating effective treatment (Granich et al., 2019; Gurmu et al., 2021). When combined with ART, early diagnosis
significantly reduces community viral load, thus limiting transmission. Nevertheless, various challenges hinder the
success of these strategies, such as poor access to healthcare, stigma, social discrimination and inadequate linkage
to care (Arachchige, 2021). To maximize effectiveness, test-and-treat must be part of a broader prevention strategy
that includes PrEP, condom distribution, education and harm reduction (Ayele et al., 2021). Recent models have
expanded in scope to include demographic characteristics, treatment stages, disease progression and co-infection
dynamics. Granich et al. (2019) and Nthiiri et al. (2015) presented compartmental models dividing populations into
susceptible, infected and treated groups, capturing HIV transmission and ART impact. Further, Feldman et al.
(2017), Khademi et al. (2018) and Nsuami & Witbooi (2018) highlighted bacterial co-infections, PrEP efficacy and
combined interventions. Together, these studies underscore the multifactorial nature of HIV dynamics and affirm

the value of mathematical modeling in crafting comprehensive, evidence-based public health strategies.

Ayele et al. (2021) utilized mathematical modeling to tailor HIVV/AIDS control strategies to the Ethiopian context,
emphasizing the value of context-specific interventions in improving public health outcomes. Similarly, Gurmu et
al. (2021) introduced a model incorporating optimal control strategies, highlighting the critical balance between
prevention and treatment in minimizing HIV transmission. Arachchige (2021) proposed an innovative
immunotherapeutic approach using CAR-NK cells to potentially eradicate HIV, signaling a shift beyond
conventional ART towards curative treatments. Chukwu et al. (2022) examined HIV/AIDS-listeriosis co-infection
dynamics, underscoring the importance of integrated management strategies for co-infections. Zhao et al. (2022)
contributed to the field by applying fractional differential equations to model HIV dynamics, offering refined tools
for capturing complex disease behavior. Chazuka et al. (2024) assessed the cost-effectiveness of various HIV
control strategies, providing a financial framework for sustainable policymaking. Finally, Odebiyu et al. (2024)
developed an SI model with asymptomatic and symptomatic compartments, concluding that enhancing detection

rates through screening significantly curtails disease spread.
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1.1. Study Objectives

The objectives are:

1) To establish the theorem of existence and uniqueness solution of the model and provide it prove,
2) To establish the theorem of positivity and boundedness of the solution and provide it prove,

3) To obtain the disease free and endemic equilibrium points of the model, and

4) To obtain the basic reproductive number.

2 2. Development of the Model

Odebiyu et al. (2024) formulate a mathematical modelling on assessing the impact of screening on HIV/AIDS
transmission dynamics. Certain assumptions were incorporated, parameters and variables were meticulously
defined and the chapter introduces the model equation and methodology employed in the study. The existing model
by Odebiyu et al. (2024) was formulated with four class of susceptible, symptomatic infectious, asymptomatic

compartmental and AIDS population.
2.1. Modified Model

This section presents a formulation of the mathematical modeling approach for understanding the transmission and
spread of HIV/AIDS. The new model was modified due to Odebiyu et al. (2024) by incorporate the exposed class,

asymptotic and asymptotical classes and use treatment and removal as a dynamic control strategy.
2.2. Variables and Parameters of the Modified Model

Table 2.1. Variables and their Meaning of the Modified Model

Variables Meaning

S(t) Susceptible population at a time t

E(t) Exposed population at a time t

|A(t) Asymptomatically infected population at a time t
I (t) Symptomatic infected population at a time t

A(t) Population of people with AIDS at a time t

T (t) Treated individuals at a time t

R(t) Removal individuals at a time t

Table 2.2. Parameters and their Meaning of the Modified Model

Parameter Meaning
A The recruitment rate
Natural mortality rate

Death due to sickness

Y7
p Contact rate between |, I and susceptible population
D

B Rate of transfer from susceptible class to exposed class
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o)

Rate of movement from exposed class of asymptomatically infected classes

T
S

Probability of people moved from exposed class of symptomatically infected classes
transfer rate from asymptomatically infected class

Rate of movement from symptomatically infected classes to AIDS compartment

Rate of transfer of individuals from exposed class to symptomatic infected individuals class
Rate of movement from asymptomatic infected individuals class to AIDS class

Movement rate from AIDS compartment to Treatment class

Propagation rate from symptomatically infected class to removed class

Movement rate from treatment class to removed class

R @ & 7 9 I N N

Movement rate from symptomatically infected class to treatment compartment

2.3. Assumptions for the Modified Model

The following assumptions were made for the modified model:

1) There is natural death in all the compartments,

2) If susceptible population come in contact into infected, there is exposure,
3) Individuals can be infected asymptomatically or symptomatically,

4) Asymptomatically and symptomatically infected individuals can be moved to AIDS compartment when the

sickness worsens,
5) It is possible for individuals to be removed or removed when treated.
2.4. Formulation of the Modified Model

The modified mathematical modelling of HIV/AID is divided into seven compartments and each compartment has

it its variables and parameters. The susceptible compartment signify S(t) increase by the recruitment rate A and

decreases by ﬂb(l A+l )S and S to form a differential equation of the for

‘c’j_f:A-ﬂb(|A+|S)s-ys 2.1)

The exposed compartment denote by E(t). The compartment increase by ﬂb(l At IS)S and decreases by

(1+ ,u)E . The differential equation is given by

C(Ij—ltzzﬂb(lAHS)S—(ler)E (22)

The Asymptomatically infected population denotes IA(t). It increase by ¢E and decreases by 7z ,, ol , and

(,u+ d )I , based on the increase and decrease, the differential equation is

%:ﬁ—ﬂlA—dA—(;ﬁd)lA (2.3)
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The Symptomatically infected compartment | S(t) increases by (1—0)E and 7z, , it also decreases by

Ag,alg, Al and (u+d )l with the equation

O:1+ts=(1—9)E+7rIA—;45—ocls,—ﬂ's—(/ﬁd)'s 2.4)

The AIDS compartment denotes A(t), increases by Mqand al, decreases by 7A and (/1 +d )A. Its differential

equation is of the form

dA
E:;/IS+O-IA—77A—(/1+d)A (2.5)

The treated compartment T(t) increases by alg,7A and decreases by T, (,u+d)T to form a differential

equation
d—-![-:als+77A—a)T—(,u+d)T (2.6)

The Removed compartment signify R(t) increases by Alg, T and decrease by R . The differential equation is

given by
i—?zﬁls+a)T—yR 2.7

Based on the model assumptions and formulation, the schematic diagram of the modified model are presented as

(w+dll

Figure 2.1. Schematic diagram of modified model
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The model equations were derived from figure 2.1 and presented in equation (2.8) as

z—?:A—ﬂb(lA+IS)S—,uS

CE = (1, +1,)5 - L+

S = -t —ot,—(urd),
O:}lLtS=(1—6?)E+7z|A—;AS—ozls—/us—(ﬂ+o|)|s (2.8)
((jj—?=yls+olA—77A—(y+d)A

((jj—-[zals+77A—a)T—(y+d)T

d—?zils+a)T—yR

3. HIVIAIDS Model Analysis

Model analysis encompasses a range of methods used to explore and understand the behavior and properties of
mathematical or computational models, such as those describing the dynamics of HIV/AIDS. It is a fundamental
tool across fields like engineering, physics, biology and economics, where models are used to represent complex
systems. Key components of this analysis include assessing the Existence and Uniqueness of the Solution,
positivity of solutions, identifying disease-free and endemic equilibrium states and determining the basic

reproduction number.

3.1. Existence and Uniqueness of the Solution

of.
If f(t, y) has continuous partial derivative —- for i =1,2,---, n on a bounded convex domain R, then it

satisfies a Lipchitz condition in R, || f (t, y)— f(t, yn_1X| < k||yn - yn_1||, i=123,---

The existence and uniqueness of the solution is explained using the theorem 3.1.

Theorem 3.1

There exist a domain D in which the solution set {S, E 1,1, AT, R} is contained and unique.

Proof:

Given that the solution set with positive initial condition
{S(O): So» E(O): By, IA(O): | pos IS(O): lsos A(O): AO’T(O):TO’ R(O): Ro}' we let
{S,E, 1, I¢, AT,R}=S(t), E(t), 1,(t), 15(t), At), T(t), R(t). The derivative (L—T along solution of the

system (2.1) is obtained by
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dm dmdS dmdE dmdl, dmdlgy dmdA dmdT dmdR
= ——

= = — 31
dt dSdt dE dt dl, dt dlg dt dAdt dT dt dR dt .

It follows that

dm
—<A- 3.2
m am (3.2)

Solving the differential inequalities, we have

Z_Tgé(l_e_yt)"' m(Sm Eos aos Isor Ao Toy RO)e_ﬂt (3:3)
Y7,

. - . A
Hence, taking the limit as t — o0 gives ¥ = —.
Y7,
Thus all the solution are contained in the modified model exists and is given by

D:{SO,EO,IAO,ISO,AD,TO,ROGERZ:NSA} (3.4)
y7i

This ends the prove.
3.2. Positivity and Boundedness of Solution

To establish the positivity of the model's solution, it is necessary to verify that all population compartments are
non-negative. Ensuring non-negative values is essential, as negative population sizes are not physically

interpretable. This property was demonstrated by providing the proof to theorem 3.2.

Theorem 3.2

Let the initial solution set be {So >20,E, =20,1,,=0,1,,=20,A =20, T, =20, R, = O}E R/

Then the solution set {S(t), E(t), 1,(t), I5(t), A(t), T(t), R(t)} is positive forall t >0.

Proof

d—szA—ﬁb(IA+ I4)S — 18

dt

ie i—?zA—[ﬂb(lA+ s )—u]S (3.5)

Since we are considering only the negative terms susceptible population S, then

ds
EZ_[/HD(IA+ |5)—,u]S (3.6)
This results to
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dS

a2 —(A+p)S (3.7)
Where
A=po(1,+1y) (3.8)

Solving for (3.7) by separating the variables, we have
> (et (39)
Integrating (3.9) we have

In(S)> [ (2+ upt (3.10)

ie In(S)>—(1+ult+C (3.11)

Taking the exponential of (3.11)

S(t)> e ue (3.12)
ie S(t)>e ¥t 4 (3.13)
S(t)> Ke (3.14)
Where

ie K=e¢ (3.15)

Applying the initial conditions at i.e t =0, equation (3.14) becomes
S(t)> Ke (sl (3.16)

s(0)>K (3.17)

Substituting (3.15) into (3.12), we have

S(t)>s(0)e " >0 (3.18)

Forall t>0

In a similar way, we can text the positivity of the remaining variables.

3.3. Disease Free Equilibrium (DEF) of the Model

The Disease-Free Equilibrium (DFE) refers to a condition where the entire population (2.1) is uninfected, with all

compartments associated with infection set to zero. To find this state, the derivatives of the infected variables are

equated to zero under the assumption of no disease presence. This meansthat E=1, =1, =A=T =R =0.
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Theorem 3.3

A disease-free equilibrium state of the model (2.1) exist at a point

EO Z(SO! Eov IAO! Isoa AO;TO! RO):(A’ O’ O! O, O, 01 Oj
7]

Proof:

Let (S, E, I,, 15, AT,R)=S% E® 1,° 1.°, A°, T°, R® be at equilibrium state.
From

i—?:A—ﬁb(IAHS)S—,uS:O

A-po(l,+15)S—48=0
A-uS=0

>
B

S° =

x| >

From

%E: (1, +1)S—(1+x)E=0
:Bb(IA"' IS)S_(]-"'IU)E:O
~@L+u)E=0

From

%%ﬂ#E—MA—dA—QHdMA=O

E-(r+oc+u+d)l, =0
~(z+o+u+d)l, =0
l,’ L

= =0
" (r+o+p+d)

From

%f:@—mE+mA—ﬂs—ms—MS—QHuMS=o
1-0E+d,—A;—alg - —(u+d)lg =0
~(y-—a-A-u+d)l =0

1”0 = 0
P (y—a-A-p+d)
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Similarly, A=T =R=0.

Sse e 0 AT R°)=(§, 0,0,0,0,0, oj
7

3.4. Endemic Equilibrium Point of the Model E*

The endemic equilibrium point of the model (2.1) is the point where
S#0,E#0,1,#0,13#0, A0, T=#0,R=0.

Theorem 3.4

The HIV presence/Endemic equilibrium point is
E =(s"E" 1,0, 150, AL T RY)

Where

E* :ﬂb[IA*+ IS*)§

L+ 4)

R E"
I, =———
T+o0+u+d

Lt 1-0)E +ad,
* _7+a+ﬂ,+,u+d

A = A +alg
n—(u+d)
T alg” +nA
w+ u+d
R*zzg*+@v
y7;

3.5. Basic Reproduction Number (R, )

The Basic Reproduction Number, often denoted as R, is a key epidemiological metric that indicates the average

number of secondary infections caused by one infected individual in a fully susceptible population. This number

depends on factors such as contact rate, transmission probability and the infectious period.

ISSN: 2582-398 [25] OPEN @ ACCESS



|2

JS R Irish Interdisciplinary Journal of Science & Research (I1JSR)
e Volume 9, Issue 4, Pages 16-31, October-December 2025
To find the basic reproduction number, R,, for the model equation (2.1), we use the next-generation matrix

approach, which involves linearizing the model around the Disease-Free Equilibrium (DFE). The infected
compartments are E(t), 1(t), A(t), T(t) with the relevant equations

dE

E:ﬂb(|A+|S)S—(1+y)E

%S:(l—a)mm—m —alg = Al = (u+d)l

[T (3.19)
s rolammA-(u+d)A

Z—Izals +nA-oT —(u+d)T

At the DFE, the susceptible population S are at their equilibrium values

s=2
y7,

The infected Matrix (F)

po(l,+15)S) [0 S 0 0
- 0 |00 00
- 0 10 0 00
0 0 0 00
and Transition Matrix (V)
@+ n)E 1+ p 0 0 0
V- Ns+alg+Alg+ulg+dlg—1-0E -, | |-1-0 y+a+i+pu+d -« 0 The
| A+ pA+dA- A -0l , |0 —y n+pu+d 0
oT +uT +dT —alg —nA 0 -a -n w+pu+d

next-generation matrix G of the F (new infection terms) and V (transition terms) is given by:
G=F-v™*

To calculate G we first need to find the inverse of V as

1 0 0 0
1+ u

(-1+6) b -z 0

Vo (—ba+yz )1+ 1) —ba+yr —ba+yr
- 7(-1+6) 7 _a 0

—ba+ yr)1+ —ba+yr —ba+yr
~1+0)ab+yn)  db+yp  nmatar 1
| (~ba+yr)l+uk (~ba+yzlc (~ba+yzk c|

ISSN: 2582-398 [26] OPEN @ ACCESS



X
JSR

PROGRESS THROUGH RESEARCH

The basic reproduction number R, is the spectral radius (dominant eigenvalue) of the next-generation matrix G .

Irish Interdisciplinary Journal of Science & Research (I1JSR)
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G=F-V*'as
BbS (-1+0)b ___ ppSh BbS 1
(-ba+ym) (1+n) -ba+yn -ba+ym
G= 0 0 0 0
0 0 0 0
0 0 0 O_
w=G-zl =0as
pps(-1+6)b ___ ppSb __ ppSm
(-ba+ym) (1+u) -ba+yn -ba-+yn
Y= 0 -z 0 0
0 0 -z
0 0 -z
The determinant is given by
~ BbS (-1 +80) b )5
(=ba+ym) (1+p)
Solving for z, we have
PoS(-1+6)b

2,=0,2,=0,2,=0,2, =

(—ba+yrfL+p)

From the structure, the eigenvalues are the entries:

poS(-1+6)h

%~ Coa+ yr )i )

“ 4. Discussion of Results

A comprehensive analysis of the Modified HIV Model (equation 2.1), emphasizing theoretical proofs and
numerical illustrations to validate the model's behavior. The analytical exploration begins with the examination of
the existence and uniqueness of the solution, where Theorem 4.1 confirms that the model possesses a unique
solution within a defined domain. This foundational result ensures that the model is well-posed and reliable for
further analytical and numerical investigation. The proof, based on differential inequalities and bounded growth of

solutions, validates that solutions remain within a biologically meaningful region.

The positivity and boundedness of the solutions were established next, a critical step in epidemiological modeling.
It confirms that each compartment (e.g., susceptible, exposed, infected, etc.) maintains non-negative values
throughout the simulation. Negative populations have no physical meaning, so proving positivity via separation of

variables and integration ensures biological relevance. The exponential nature of the solution form shows how
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population levels evolve over time while remaining within realistic limits. The model further guarantees that the
spread of HIV and related interventions can be accurately studied without risk of computational anomalies such as

negative or infinite values.

In evaluating the Disease-Free Equilibrium (DFE), the system is linearized under the condition that no infection is
present in the population. This theoretical state helps to analyze the stability of the model when no HIV exists.
From this, the Endemic Equilibrium (EE) is derived, where the disease persists at a steady state. This equilibrium
point is critical in determining whether HIV will die out or become permanently established. These equilibrium

analyses form the basis for calculating the basic reproduction number R, .

The basic reproduction number R, is derived using the next-generation matrix method, which captures how new
infections propagate from existing ones. This method involves computing Jacobian matrices of new infection and
transition terms and taking the spectral radius of their product.

5. Summary and Conclusion

This study developed and analyzed a modified mathematical model for HIV transmission dynamics, incorporating
treatment and removal as active control strategies. Building upon the foundational work of Odebiyu et al. (2024),
the model introduced additional compartments for exposed individuals, asymptomatic and symptomatic infections,
treatment and removed classes. The primary aim was to offer a more comprehensive depiction of HIV progression

and control dynamics.

The research began by establishing the existence and uniqueness of the solutions of the model, positivity of the
model's solutions, ensuring all population compartments (susceptible, exposed, infected, treated, etc.) remained
non-negative over time. The Disease-Free Equilibrium (DFE) was then derived, indicating a steady state where
HIV is absent from the population and endemic equilibrium point. The local stability of this equilibrium was shown

to depend on the basic reproduction number, which was computed using the Next Generation Matrix method.

The results of this study affirm the effectiveness of incorporating treatment and removal as control mechanisms in
HIV modeling. Through mathematical formulation and analysis, the modified model provides insights into how
early detection, treatment adherence and removing individuals from the infectious pool through recovery or death

can reduce the spread of HIV.

“76. Suggestions for Further Studies

To enhance and refine the findings of this study, future research could consider the following directions:

1) Extending the model to include co-infections such as HIV-TB or HIV-syphilis dynamics.

2) Incorporating stochastic elements to capture uncertainties in transmission rates and treatment response.
3) Calibrating the model with real-world data from high-prevalence areas to improve the predictive power.
4) Exploring cost-effectiveness analyses to determine optimal allocation of limited healthcare resources.

5) Modeling the impact of emerging technologies such as long-acting injectable and HIV vaccines when they

become available.
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