Effect of Irrigation Water Level and N-fertilizer Rate on Yield and Water Productivity of Wheat Under Furrow Irrigation at Tibila Irrigation Scheme, Arsi Ethiopia

Negash Bedaso1*, Asnake Tilaye1, Bayan Ahmed2 & Kamil Ahmed2

1 Oromia Agricultural Research Institute, Asella Agricultural Engineering Research Center, Asella, Ethiopia. 2 Oromia Agricultural Research Institute, Addis Ababa, Ethiopia. Email: baatii2004@gmail.com*

ABSTRACT

The response of wheat yield to different levels of irrigation and varying amounts of nitrogen fertilizer was investigated from 2020-2022 GC at Tibila irrigation scheme. Three levels of irrigation (70, 85, and 100% ETc) and three nitrogen rates (46, 69, and 92 kg/ha) were arranged in two factorial combination in Randomized Complete Block Design with three replications. Recently released bread wheat variety kingbird was used as test crop. The experimental field was divided into 27 plots with plot size of 4m x 6m dimension to accommodate five furrows with spacing of 60 cm and having 6m length. From the result, it is found that, irrigation and nitrogen levels both had a considerable impact on wheat grain yield. The analysis of variance result revealed that the maximum grain yield (5.88tha-1) of wheat was recorded at 92 kg/ha nitrogen rate and 100% ETc irrigation level. The minimum grain yield (3.98tha-1) was obtained from 46 kg/ha nitrogen and 70% ETc irrigation treatment. Similarly, the study revealed that other yield components like plant height, spike length, number of seed per spike, productive tiller number and above ground biomass of wheat increased with the increasing rates of nitrogen fertilizer and irrigation water level. Here, increasing the application rate of nitrogen fertilizer from (46-92) kg/ha and water level from 70% ETc to full irrigation maximize yields of wheat. On the other hand, reducing water level from 100 to 85% ETc and N-fertilizer rate from 92 to 69 kg/ha was not reduce the yield significantly, rather it have water saving and economic advantage. Moreover the partial budget analysis revealed that an application of 85% ETc irrigation and 69 kg/ha nitrogen fertilizer is the best treatment to obtain an optimum yield and maximum benefit cost ratio in the study area. Therefore, application of 85% ETc irrigation and 69 kg/ha nitrogen is recommended for optimum returns of irrigation and nitrogen fertilization of wheat in the area.

Keywords: Yield; Water level; Nitrogen rate; Wheat.

1. Introduction

Wheat (Triticum aestivum L.) is one of the leading cereals in the world. It belongs to the family Gramineae and it is the world’s most widely cultivated cereal crop which ranks first followed by rice. It is preferable than rice for its higher seed protein content. It ranks first both in acreage and production among the grain crops of the world (FAO, 2008). Likewise, wheat is one of the strategic crops in Ethiopia, because of its role for food security, import substitution and supply of raw material for agro-processing industry.

Ethiopia is the third largest wheat producing country in Africa (EIAR, 2020). This crop is one of the major cereal crops produced by 4.6 million smallholder farmers on 1.8 million hectares of land with an estimated annual production of 5.0 million tons at an average productivity of 2.8 t/ha which has been consistently increasing for the last 25 years in the country, but much lower than the world average 3.3 t/ha (EIAR, 2020). This is due to shortage of irrigation water, in sufficient farm resources, improper use of fertilizers and due to salinity and water logging. Nitrogen (N) and water are the most common limiting factors in agricultural systems throughout the world. Similarly, wheat crop need sufficient available water and N to achieve optimum yield and adequate grain-protein content (IAEA, 2000). Wajid et al. (2002) reported that wheat crop produced highest grain yield by applying irrigation at all definable growth stages.

According to (IAEA, 2000), lower economical benefits for farmer often arise from the use of sub-optimal rate of N-fertilize. On the other hand, excessive irrigation and N-fertilizer use may result in environmental problem such
as nitrate contamination of groundwater and emission of N$_2$O and NO. Thus; without judicious use of irrigation water and applied N-fertilize the yield potential of wheat crop cannot be obtained satisfactorily.

Nitrogen fertilizer and irrigation are two major factors influencing wheat yield and NO$_3$-N accumulation but these can be controlled by the grower (Ottman and Pope, 2000; Yin et al., 2007). Irrigation effectively increases crop yield although water-use efficiency (WUE) decreases as the irrigation rate increases (Al-Kaisi et al., 2003). Excessive N application could lead to soil acidification as well as worsen the soil environment thus, ultimately has a negative impact on crop growth and yield (Guo et al., 2010; Schroder et al., 2011).

Previous studies indicated that reducing N application rates to a reasonable level in maize and wheat planting caused no loss of yield and even small increases (Zhang et al., 2015). Zhao et al. (2014) found that the application of lower N rates sustained high yields compared with higher N rates. Yield reductions in crops with high N fertilization are primarily caused by physiological disorders associated with excessive uptake of N and soil degradation (Qiao et al., 2012). Although, optimum N rates are affected by many factors, studies have shown that a moderate reduction in N inputs does not lead to a decrease in crop yield (Luo Z. et al., 2018) but, conversely, improved N use efficiency (Zhang et al., 2015a). Excessive N fertilization has caused low N use efficiencies and serious environmental problems (Cui et al., 2016; Zhu et al., 2016). In general, increased soil water content enhances crop yield response to N fertilization, especially when optimum water-N rates are applied (Norwood, 2000).

The demand for wheat in Ethiopia is growing faster than for any other food crop, particularly in urban areas. The gap between demand and supply is widening because of rapidly increasing population and changing preferences towards wheat-based food items (EIAR, 2020). Cognizant to the aforementioned facts, the Government of Ethiopia (GoE) has already identified key priority intervention areas to increase productivity of small-scale farmers and expand large-scale commercial production of wheat. The top priorities identified include: development of small- and large-scale irrigation schemes, financing effectual supply of agricultural inputs, improving agricultural production methods using mechanization, post-harvest loss reduction and natural resources management (EIAR, 2020).

Even though the government need to produce wheat crop by irrigation is high, there was no research work on fertilizer rate and irrigation water levels that gain high net return. To this end, efficient use of N-fertilizer requires comprehensive knowledge of the soil, the amount of water applied, timing and source and amount of N-fertilizer. Therefore; this study was aimed in finding out the optimized fertilizer rate and water level on wheat crop using furrow irrigation in Tibila irrigation scheme.

2. Materials and Methods

2.1. Description of the Study Area

This study was conducted at Tibila Irrigation scheme of Arsi Zone, Oromia National Regional State, Ethiopia. The schemes is situated about 150 kilometers away to the east from the country’s capital city, Addis Ababa and 95 kilometers away from Asella Town, the Arsi Zone capital. The sachem is bounded within 8°89293’N, 039°03129’E at an altitude of 1303m above sea level.
According to the meteorological data obtained from the nearest Awash Melkassa meteorological station, which is about 33 kilometers far from the study area, the annual mean rainfall distribution in the area ranges between 500mm to 900mm. The rainfall is mostly characterized by erratic and uneven distribution. The area has a bimodal rainfall pattern, with the small rains occurring from February to April and the main rainfall season, which accounts for the largest total rainfall of the year occurs from July to September. The Mean monthly relative humidity varies from 32% to 49%. The potential evapo-transpiration is 1650 mm per annum and the monthly mean temperature ranges from (17-23)°C.

2.2. Soil Sampling and Analysis

Representative composite soil samples were collected from 0– 30 cm soil depths for analysis of selected soil physico-chemical properties (Textural, FC, PWP, ECe, pH and Organic matter (OM)). Bulk density of the field was determined from undisturbed soil samples using core sampler having a dimensions of 5.0 cm diameter and 5.0 cm height (V=98.21 cm³). The samples were oven dried for 24 hours at temperature of 105°C to obtain dry soil sample. Hence, the bulk density (BD) was computed following Eq.(1),

$$ BD = \frac{\text{weight of dry soil (g)}}{\text{volume of core sampler (cm}^3\text{)}}$$

2.3. Treatments and Experimental Design

The experiment was two factorial combinations arranged in Randomized Complete Block Design (RCBD) with three replications. The two factors were irrigation water level and different fertilizer rate. The irrigation water level were three (85% ETc, 70% ETc, and one control 100% ETc). Whereas, a recommended fertilizer, three N rates (46N, 69N, 92N) kg ha⁻¹. Recently released bread wheat varieties king-bird was used as test crop. All the agronomic activities including weeding, cultivation, disease and insect pest control were carried out for all the experimental plots equally as per the recommendation. A total of nine treatments were accomplished with three replications. The experimental field was divided into 27 plots with plot size of 4 m x 6 m dimension (24 m²) to accommodate six furrows with spacing of 60 cm and having 6m length, Consisting four ridges and five furrows for each plot. The blocks had a buffer zone of 1.2 m from water supplying canal and plots were separated by 1.5 m from each other to eliminate influence of lateral flow of water. Field canal was constructed for each block to irrigate the field. For each plot box shaped structures were constructed to dissipate the energy of water diverted to the plots.

Table 1. The treatment combination of the experiment

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Water level (ETc%)</th>
<th>N-rate (kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁</td>
<td>100</td>
<td>46</td>
</tr>
<tr>
<td>T₂</td>
<td>100</td>
<td>69</td>
</tr>
<tr>
<td>T₃</td>
<td>100</td>
<td>92</td>
</tr>
<tr>
<td>T₄</td>
<td>85</td>
<td>46</td>
</tr>
<tr>
<td>T₅</td>
<td>85</td>
<td>69</td>
</tr>
</tbody>
</table>
2.4. Crop Water Requirements and Irrigation Water Management

2.4.1. Crop water requirement

Reference evapotranspiration, ETo was estimated using FAO Penman-Monteith equation from long term meteorological data collected from Awash Melkassa meteorological station with the help of CROPWAT 8.0 model. Seasonal crop water requirements, ETc was estimated by multiplying long term ETo value with the established Kc value (Eq. 2),

\[
ET_c = ETo \times Kc
\]

Where: ETc is Crop evapotranspiration (mm/day); ETo is Reference crop evapotranspiration (mm/day) and Kc is Crop coefficient (fraction).

Due to differences in evapotranspiration during the various growth stages, Kc for a given crop varies over the growing period. The growing period can be divided into four distinct growth stages. Such as: initial, crop development, mid-season and late season. The growth period of wheat in the experimental site is 135-days and it was divided into four stages, viz, initial stage (25days), development stage (40 days), mid stage (47 days) and late stage (23 days). Accordingly, the Kc value for wheat crop under Tibila irrigation scheme climatic condition were 1.00 throughout the growing period.

2.4.2. Irrigation water management

Soil moisture level in all plots was brought to field capacity for each treatment in the last irrigation during the common irrigation time. Soil water availability in the experiment was tested from routine measurements of soil moisture content by the gravimetric method. The wet soil samples was weighed and placed in an oven dry at a temperature of 105°C and dried for 24 hours. The gravimetric water content was converted to equivalent depth (D) from Eq.(3),

\[
D = \frac{W_w - W_d}{W_d} \times BD \times dz
\]

Where: D is the depth of available soil moisture (mm); Ww is wet soil weight (gm); Wd is dry soil weight (gm); BD is the soil dry bulk density (gm cm-3) and dz is the sampling depth within the crop root depth (mm).

The soil moisture depleted between irrigation was obtained from Eq.(4),

\[
IRn = (FC - D)
\]

Where: IRn is the net irrigation requirement (mm) and FC is the soil moisture content at field capacity (mm).
2.4.2.1. Irrigation scheduling and management

Total available water (TAW) was computed from the moisture content of field capacity and permanent wilting point using equation Eq.(5),

\[TAW = (FC - PWP) \times BD \times Dz \quad (5) \]

Where: TAW is the total available water in the root zone (mm), FC and PWP are moisture content at field capacity and permanent wilting point (%) on weight basis respectively and Dz is the root zone depth of wheat at times of each irrigation. For maximum crop production, irrigation schedule was fixed based on p-value. The P-value so called depletion fraction for winter wheat used in this study was TAW (p = 0.55) according to (Allen et al.1998).

Hence, RAW was computed from the Eq.(6),

\[RAW = TAW \times p \quad (6) \]

Where: RAW is the readily available water or net irrigation depth, IRn (mm), p is allowable permissible soil moisture depletion fraction and TAW is total available water in the root depth (mm). Hence, the IRn of irrigation was computed from Eq.(7),

\[IR_n = TAW \times P \quad (7) \]

Where: IRn is the net irrigation requirement (mm) and p is depletion fraction.

Irrigation interval, f was estimated using the following Eq.(8),

\[f = \frac{IR_n}{ETc} \quad (8) \]

Where: f is irrigation interval (day) and ETc is mean daily crop water requirement (mm day\(^{-1}\)).

Whenever there is rainfall between irrigation, the IRn could be obtained from the Eq.(9),

\[IR_n = ETc - P_{eff} \quad (9) \]

Where: P\(_{eff}\) is effective rainfall (mm).

The effective rainfall, P\(_{eff}\) was estimated using the method given by (Allen \textit{et al.}, 1998) as,

\[P_{eff} = 0.6 \times P - \frac{10}{30/31} \text{ for month } \leq \frac{70}{30/31} \text{ mm } (10) \]

\[P_{eff} = 0.8 \times P - \frac{24}{30/31} \text{ for month } > \frac{70}{30/31} \text{ mm } (11) \]

Where: P is daily rainfall (mm)

2.4.2.2. Field application efficiency and gross irrigation water requirement

Field irrigation application efficiency (Ea) is the ratio of water directly available in crop root zone to water received at the field inlet. Furrow irrigation could reach a field application efficiency of 70% when it is properly designed, constructed and managed. The average ranges vary from 50 to 70%. However, a more common value is 60% (FAO, 2002). For this particular experiment, irrigation efficiency was taken as 60%, which is common for surface
irrigation method in furrow irrigation. Based on the net irrigation depth and irrigation application efficiency, the gross irrigation water requirement was calculated based on Eq. (12),

\[IR_g = \frac{IR_n}{E_a} \]

(12)

Where: \(IR_g \) is the gross irrigation requirement (mm) and \(E_a \) is the field application efficiency (%).

2.4.2.3. Setting and discharge measurement of parshall flume

Irrigation water applied to each experimental plot was measured by 3-inch Parshall flume (PF) made from metal sheet and installed 10 m away from the nearest plot along main canal. The entrance section was set 4 cm above the canal bed to avoid submergence flow. Only one measurement was required to determine flow rate of free flow condition. This is the height of water from gauge of PF written on two-third surface wall of the entrance section. The calculated gross irrigation was finally applied to each experimental plots based on the treatments proportion. Volume of water applied for every treatment was determined from plot area and depth of gross irrigation requirement.

Time required to irrigate each treatment was calculated from the ratio of volume of applied water to the discharge-head relation of 3-inch PF. Since discharge level might vary at field condition, time required was calculated from 5 to 15 cm head levels. The time required to deliver the desired depth of water into each furrow was calculated using Eq. (13),

\[t = \frac{A}{Q} \frac{d_{gross}}{g} \]

(13)

Where: \(d_{gross} \) - gross depth of water applied (mm), \(t \) - application time (sec), \(A \) - plot Area (m\(^2\)) and \(Q \) - flow rate (l/s).

2.5. Data Collection

All agronomic data were collected from net plot through marginalizing the boarder effect

Plant height (cm): The height wheat was measured from the soil surface to the tip of a spike from 10 randomly tagged plants in the net plot area at physiological maturity.

Number of productive tillers: The number tillers were counted from square box of (1 x 1) m\(^2\) selected randomly per net plot at physiological maturity and converted to m\(^2\).

Number of kernels per spike: The number of kernels per spike were recorded as an average of 10 randomly taken spikes from the net plot area.

Thousand kernel weight: This were also determined based on the weight of 1000 kernels sampled from the grain yield of each net plot and weighed with electronic sensitive balance.

Above-ground dry biomass yield: The wheat biomass was determined through weighting plants harvested from the net plot area.

Grain yield: This was also taken by harvesting and threshing the grain yield from net plot area. The yield were adjusted to 12.5% moisture content and expressed as yield in tone ha\(^{-1}\).
2.6. Water Productivity

Water productivity is simply the ratio of the water beneficially used and the quantity of water delivered. This parameter was calculated by dividing wheat harvested from net plot yield in kilogram to unit volume of water in cubic-meter or hectare-meter (Araya et al., 2011). The water productivity (WP) also known as the total water use efficiency (Kg m\(^{-3}\)) and Irrigation Water Use Efficiency (IWUE, Kg m\(^{-3}\)) was calculated based on Eq.(14),

\[
WP = \frac{Ya}{Twu}
\]

(14)

Where: WP - Water productivity (kg/m\(^3\)), Ya - Actual yield (kg/ha), Twu – Total water used (m\(^3\)/ha).

2.6.1. Yield response factor

Yield response factor (Ky) is one of the important parameters that indicate whether moisture stress due to deficit irrigation is advantageous or not in terms of enhancing water productivity. The crop yield response to water relates relative yield decrease to relative evapotranspiration of irrigation deficit level. The effect of water stress on yield was quantified by calculating the yield response factor (Ky) (Doorenbos & Kassam, 1979):

\[
(1 - \frac{Ya}{Ym}) = ky(1 - \frac{ETa}{ETm})
\]

(15)

Where: Ym is maximum yield (kg/ha) from the plot without water stress during the growing season and Ya is actual yields (kg/ha); ETm (mm) and ETa (mm) are the maximum and actual evapotranspiration and Ky is a yield response factor representing the effect of a reduction in ET on yield losses.

2.6.2. Economic analysis

It is a way of calculating the total costs that vary and the net benefits of each treatment (CIMMYT, 1988). Economic water productivity analysis were begin by considering the general relationship between the crop water use and crop yield per hectare of land at different irrigation application levels using the partial budget analysis. In this study the costs that varied among treatments were cost of water and labor for watering during experimental season.

The net income was calculated by subtracting total variable cost production from total return (Kuboja and Temu, 2013) and is computed as Eq.(16),

\[
NI = TR - TVC
\]

(16)

Where: NI - Net income;
TR - Total income from sales;
TVC - Total variable cost spent during production.

The marginal return rate in measures the increase of the net income, which is generated by each additional unit of expenses and is computed as Eq.(17),

\[
MRR = \frac{\Delta NI}{\Delta VC}
\]

(17)

Where: MRR - Marginal rate of return (%).
ΔNI – change in net income;
ΔVC – change in variable cost.

2.7. Statistical analysis

The collected data were statistically analyzed using statistical analysis system (SAS) version 9.0 statistical package using procedure of general linear model (SAS, 2002) for the variance analysis. Mean comparisons was executed using least significant difference (LSD) at 5% probability level when treatments show significant difference to compare difference among treatments mean. Simple correlation analysis was also used to see the association of wheat yield component, yield and water productivity.

3. Results and Discussions

3.1. Soil Analysis

3.1.1. Analysis of selected soil physical properties

The laboratory results of soil physical properties of the experimental site were presented in (Table 2) below. The average result of the soil physical properties from the experimental site showed that, the composition of sand, silt and clay percentage were 41%, 39% and 20% respectively. Thus, according to USDA soil textural classification, the soil in which the trial conducted is classified as Loam soil.

Other soil physical properties like Bulk, PWP, FC and TAW had also determined by the following standard procedure in the soil laboratory. Hence, the average bulk density of the experimental soil is found to be 1.44 g/cm3 and Field capacity (FC), Permanent wilting point (PWP) and total available water (TAW) of the soil were 27.8%, 13.7%, and 140mm/m respectively (Table 2).

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Bulk density (g/cc)</th>
<th>FC (%)</th>
<th>PWP (%)</th>
<th>TAW</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 30</td>
<td>1.44</td>
<td>27.8</td>
<td>13.7</td>
<td>140.00</td>
<td>% Sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41.00</td>
</tr>
</tbody>
</table>

3.1.2. Analysis of selected soil chemical properties

From table 3, the pH of the experimental site through the analyzed soil profile was found to be in recommended range with average value of 8.43. In the same fashion the laboratory result gives 1.02% organic matter and 0.051% total nitrogen of the soil. An average electrical conductivity of an experimental soil is also 0.25 ds/m.

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>pH</th>
<th>Total organic matter (%) OM</th>
<th>Total Nitrogen (%) TN</th>
<th>ECe (ds/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 30</td>
<td>8.43</td>
<td>1.02</td>
<td>0.051</td>
<td>0.25</td>
</tr>
</tbody>
</table>
3.2. Irrigation water applied to wheat throughout the growth stages

From Table 4, water saved from treatment of 100% ETc, 80% ETc and 70% ETc were 0, 112.5 mm and 168.7 mm of total net volume of irrigation water applied respectively. Total rainfall record in the growing season was 19.7 mm and this was deducted from gross irrigation requirement during irrigation.

Table 4. Water applied per growth stage and water saved from each treatment (mm)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Growth stage</th>
<th>IRg (mm)</th>
<th>Water saved (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>Development</td>
<td>Mid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3. Effect of different Irrigation water levels and N-fertilizer rate on yield and yield component of wheat

The effect of different Irrigation water levels and N-fertilizer rate on plant height, number of seed per spikes, spike length, tiller number, above ground biomass yield and grain yield of bread wheat King-bird varieties at Tibila irrigation scheme is indicated in Table 5. As indicated in the Table 5, there were mean yield and mean yield component differences between the treatments. Accordingly, wheat grown under T3 (100% ETc of water and 92 kg ha\(^{-1}\) N level) had the highest plant height, spike length, number of seed per spike, productive tiller number, above ground biomass yield and grain yields (Table 5). Whereas, wheat grown under T6 (85% ETc of water and 92 kg ha\(^{-1}\) N) was recorded the highest thousand kernel weight (TKW) and also ranks as the 2nd higher yield among the treatment.

Moreover, the highest wheat biomass yield of 14.2 t ha\(^{-1}\) which is 32% higher over the smallest biomass yield were recorded on wheat grown under T3 (100% ETc and 92 kg ha\(^{-1}\) N) and shown significant variation (P<0.05) over T4 (100% ETc and 92 kg ha\(^{-1}\) N), T5 (85% ETc and 69 kg ha\(^{-1}\) N) and T7 (70% ETc and 46 kg ha\(^{-1}\) N). The 2nd biomass yield 14 t ha\(^{-1}\) which gave 30% higher biomass yield over the smallest biomass among the treatment were recorded on T6 (85% ETc and 92 kg ha\(^{-1}\) N) and also shown significant variation (P<0.05) over T4, T5 and T7 (Table 5). Here, the reduction of irrigation water from 100% ETc to 70% ETc and N-rate from 92 to 46 kg ha\(^{-1}\) reduced the biomass production by 32%. Different researchers reported similar result on wheat production (Maqbool et al., 2015; Guo et al., 2013; Tavakoli and Moghadam, 2012). The decreased above-ground biomass in reduced water level and N-rate treatments might be due to reduction in photosynthesis in which amount of water and chlorophyll is important. According to Guo et al., (2013) reduced water level affects photosynthesis capacity through reduction of chlorophyll content and damage of the reaction center of photosystem.

Similarly, different water levels and N-rates on wheat has shown a significant (p<0.05) influence on grain yield per hectare production (Table 5). The highest grain yield (5.88 tha\(^{-1}\)) were obtained when the bread wheat was grown under T3 (100% ETc and 92 kg ha\(^{-1}\) N) and has no significant differences over T1 (70 ETc and 69 kg ha\(^{-1}\) N), T2 (100 ETc and 69 kg ha\(^{-1}\) N), T3 (85 ETc and 69 kg ha\(^{-1}\) N), T6 (85 ETc and 92 kg ha\(^{-1}\) N), T9 (70 ETc and 92 kg ha\(^{-1}\) N)
This result is almost similar with finding by Xiaojun Shen (2020) who reported that the grain yield decreased with the decrease of the amount of irrigation under each nitrogen fertilizer treatments, and there was no significant difference when the irrigation amount exceeded 80% ETc of the irrigation requirement. Aydin et al. (2000) also reported that irrigation at 66% ASMD was the most effective in terms of grain yield in wheat. Similarly, Nuru Seid et al., (2021) reported as nitrogen fertilizer applied at rate of 138 kg ha\(^{-1}\) had 6.2 % less grain yield on bread wheat than fertilizer rate applied at 92 kg ha\(^{-1}\) clay soil of Mekidal district, Wollo.

On the other hand, the minimum grain yield (3.98 t ha\(^{-1}\)) was observed at T\(_7\) (70 ETc and 46 kg ha\(^{-1}\)N) and this was significantly different over T\(_1\) (100% ETc and 92 kg N), T\(_4\) (85 ETc and 69 kg ha\(^{-1}\)N), T\(_6\) (85ETc and 92 kg ha\(^{-1}\)N) and T\(_9\) (70ETc and 92kg ha\(^{-1}\)N) (Table 5). Different studies conducted revealed as water level and N-rate affects grain yield production of irrigated wheat (Maqbool et al., 2015; Guo et al., 2013; Tavakoli and Moghadam, 2012). In this study, reduction of irrigation water and N-rate from 100% ETc and 92 kg ha\(^{-1}\)N to 70% ETc and 46 kgha\(^{-1}\) leads to reduction of grain yield by 28%.

Thus, better water and nutrient availability contribute for better plant growth and yield. Tavakoli and Moghadam (2012) concluded wheat output could be substantially and consistently increased in semi-arid climate zone when 66% of full irrigation with appropriate management practiced. Generally, though bread wheat grown under full irrigation (100% ETc water level) and maximum N-fertilizer rate had better yield advantage as compared to minimum water level and fertilizer rate and it were not significantly varied over the treatment T\(_1\),T\(_2\),T\(_3\),T\(_6\), and T\(_9\). Here it can be observed that, reducing irrigation water level and N-fertilizer rate reduce the yield, but reduction to some extent will not reduce the yield significantly.

Table 5. Effects of water levels and N-fertilizer rates on grain yield and yield components for two cropping seasons (2020-2022 GC)

<table>
<thead>
<tr>
<th>Treatments</th>
<th>W/Level ETC%</th>
<th>N-level kg ha(^{-1})</th>
<th>PH(cm)</th>
<th>NT</th>
<th>S/S</th>
<th>SL(cm)</th>
<th>BY (ton/h)</th>
<th>GY (t/h)</th>
<th>TKW</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(_1)</td>
<td>100</td>
<td>46</td>
<td>77.53(\text{bcd})</td>
<td>3.27(\text{ab})</td>
<td>48.93(\text{bc})</td>
<td>7.73(\text{bc})</td>
<td>12.3(\text{abc})</td>
<td>4.99(\text{bc})</td>
<td>35.23(\text{ab})</td>
</tr>
<tr>
<td>T(_2)</td>
<td>100</td>
<td>69</td>
<td>80.27(\text{abc})</td>
<td>3.53(\text{ab})</td>
<td>51.27(\text{bc})</td>
<td>7.93(\text{ab})</td>
<td>12.0(\text{abc})</td>
<td>5.23(\text{abc})</td>
<td>35.97(\text{ab})</td>
</tr>
<tr>
<td>T(_3)</td>
<td>100</td>
<td>92</td>
<td>83.87(\text{a})</td>
<td>4.13(\text{a})</td>
<td>57.77(\text{a})</td>
<td>9.03(\text{a})</td>
<td>14.2(\text{a})</td>
<td>5.88(\text{a})</td>
<td>37.13(\text{ab})</td>
</tr>
<tr>
<td>T(_4)</td>
<td>85</td>
<td>46</td>
<td>73.47(\text{de})</td>
<td>3.27(\text{ab})</td>
<td>46.87(\text{bc})</td>
<td>7.13(\text{cd})</td>
<td>11.0(\text{bc})</td>
<td>4.49(\text{c})</td>
<td>34.80(\text{b})</td>
</tr>
<tr>
<td>T(_5)</td>
<td>85</td>
<td>69</td>
<td>78.67(\text{bcd})</td>
<td>3.33(\text{ab})</td>
<td>51.25(\text{bc})</td>
<td>7.90(\text{bc})</td>
<td>10.3(\text{c})</td>
<td>5.22(\text{ab})</td>
<td>36.57(\text{ab})</td>
</tr>
<tr>
<td>T(_6)</td>
<td>85</td>
<td>92</td>
<td>82.27(\text{ab})</td>
<td>4.07(\text{ab})</td>
<td>51.00(\text{bc})</td>
<td>8.27(\text{ab})</td>
<td>14.0(\text{a})</td>
<td>5.58(\text{ab})</td>
<td>38.63(\text{a})</td>
</tr>
<tr>
<td>T(_7)</td>
<td>70</td>
<td>46</td>
<td>69.9(\text{e})</td>
<td>2.67(\text{b})</td>
<td>44.80(\text{c})</td>
<td>6.83(\text{d})</td>
<td>9.7(\text{c})</td>
<td>3.98(\text{c})</td>
<td>37.30(\text{ab})</td>
</tr>
<tr>
<td>T(_8)</td>
<td>70</td>
<td>69</td>
<td>76.07(\text{id})</td>
<td>2.87(\text{ab})</td>
<td>44.80(\text{c})</td>
<td>7.60bc</td>
<td>12.0(\text{abc})</td>
<td>4.70(\text{bc})</td>
<td>35.23(\text{ab})</td>
</tr>
<tr>
<td>T(_9)</td>
<td>70</td>
<td>92</td>
<td>81.20(\text{abc})</td>
<td>4.13(\text{a})</td>
<td>47.73(\text{bc})</td>
<td>8.10(\text{ab})</td>
<td>13.7(\text{ab})</td>
<td>5.29(\text{ab})</td>
<td>37.90(\text{ab})</td>
</tr>
</tbody>
</table>
3.4. Effect of Irrigation Water Level and N-fertilizer rate on Water Use Efficiency

It can be observed from the result that, as treatments with lower yield due to less water application had higher water use efficiency. As shown in Table 6, water use efficiency (WUE) was significantly (P<0.05) affected due to irrigation level and fertilizer rate. The largest value of 1.34 kg m\(^{-3}\) was recorded by T\(_9\), and also of the next was recorded by T\(_8\) (1.19 kg m\(^{-3}\)) and T\(_6\) (1.24 kg m\(^{-3}\)) respectively. Water productivity was less and not significantly varied from one another in T\(_1\), T\(_2\) and T\(_3\) due to full irrigation (i.e. 100 % ETc) and in T\(_4\) and T\(_7\) due to less N-rate application. In this study, high irrigation water level records low water use efficiency and higher N-fertilizer rate and lower water level records higher water use efficiency. From Table 6, the highest value 1.34 kgm\(^{-3}\) of WUE was recorded at lower irrigation level and maximum N-rate application and the minimum value 0.89 kgm\(^{-3}\) was obtained under full irrigation and low N-rate application. Different studies conducted on wheat reveal reduction of irrigation water level affects water use efficiency of irrigated wheat (Pradhan et al., 2013). Shamsi et al., (2010) for instance reported that, water use efficiency of wheat varied from 0.66 to 1.34 kg/m\(^3\) between different irrigation regimes. Hamid et al., (2012) on the other hand found that, irrigation of wheat below optimum level to some extent save about 22% of irrigation water with no significant loss in yield. There for the result obtained in this experiment is within the previous study range and was found reasonable.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Water/L</th>
<th>N-level</th>
<th>GY(t/h)</th>
<th>Water Used</th>
<th>WUE (kg m(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(_1)</td>
<td>100</td>
<td>46</td>
<td>4.99(^{ab})</td>
<td>562.6</td>
<td>0.89(^{cd})</td>
</tr>
<tr>
<td>T(_2)</td>
<td>100</td>
<td>69</td>
<td>5.23(^{abc})</td>
<td>562.6</td>
<td>0.93(^{cd})</td>
</tr>
<tr>
<td>T(_3)</td>
<td>100</td>
<td>92</td>
<td>5.88(^a)</td>
<td>562.6</td>
<td>1.10(^{bcd})</td>
</tr>
<tr>
<td>T(_4)</td>
<td>85</td>
<td>46</td>
<td>4.49(^{bc})</td>
<td>450.1</td>
<td>1.00(^{bcd})</td>
</tr>
<tr>
<td>T(_5)</td>
<td>85</td>
<td>69</td>
<td>5.22(^{abc})</td>
<td>450.1</td>
<td>1.16(^{ab})</td>
</tr>
<tr>
<td>T(_6)</td>
<td>85</td>
<td>92</td>
<td>5.58(^{ab})</td>
<td>450.1</td>
<td>1.24(^{ab})</td>
</tr>
<tr>
<td>T(_7)</td>
<td>70</td>
<td>46</td>
<td>3.98(^c)</td>
<td>393.8</td>
<td>1.01(^{abc})</td>
</tr>
<tr>
<td>T(_8)</td>
<td>70</td>
<td>69</td>
<td>4.70(^{bc})</td>
<td>393.8</td>
<td>1.19(^{ab})</td>
</tr>
<tr>
<td>T(_9)</td>
<td>70</td>
<td>92</td>
<td>5.29(^{ab})</td>
<td>393.8</td>
<td>1.34(^a)</td>
</tr>
</tbody>
</table>

S/S= Number of seed per spikes , NT = number of tillers and TKW = thousand kernel weight, PH(cm)=Plant height, SL=Spike length, BY=Biomass yield and GY=Grain yield

Table 6. Effects of water levels and fertilizer rates on wheat water use efficiency
3.5. Yield response factor

The result reveals that lower yield response factor was associated with higher water level and fertilizer rate treatments in which values of 100% ETc 92 kg of N, 85 % ETc 92 kg of N were 0.23 and 0.25 respectively. The result reveals the sensitivity of yield increased as water level decreases. According to FAO (2002), yield response factor of different crops and different stress condition varies from 0.20 for tolerant crops to 1.15 for sensitive crops. Reducing irrigation water during practicing deficit irrigation in wheat at flowering and grain filling resulted in a yield response factor of 0.39 and reduction of irrigation water amount during the entire growing season leads to yield response factor of 0.76 in wheat (FAO, 2002).

Crop yield and water use efficiency can be increased if sufficient amount of water is supplied and if sufficient amount of nutrient (especially nitrogen) is also added. The 85 % ETc water level and 69 kg N gives optimum yield and water production (Table 7).

As indicated in Table 7, the result shown that the minimum yield reduction 5.1% was in T₆ (85% ETc and 92 kg ha⁻¹ of N). But, it consumes large amount N-rate. T₅ (85% ETc & 69 kg ha⁻¹ of N) result in yield reduction of 12.9% correspondingly saves 112.5mm of water from the required amount of gross irrigation and about 27 kg ha⁻¹ of N from the maximum application in the trial. Accordingly, additional area irrigated with saved water and the saved amount of fertilizer can be used for other area. It clearly seen that the value of net yield generated was not influenced only by water applied but also with N-rate applied.

Table 7. Extent of saved water and yield reduction

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Water/L ETc%</th>
<th>N-level kg ha⁻¹</th>
<th>GY(t/h)</th>
<th>Yield Reduction (%)</th>
<th>GIrr (mm)</th>
<th>Water saved (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁</td>
<td>100</td>
<td>46</td>
<td>4.99</td>
<td>15.1</td>
<td>562.6</td>
<td>-</td>
</tr>
<tr>
<td>T₂</td>
<td>100</td>
<td>69</td>
<td>5.23</td>
<td>11.1</td>
<td>562.6</td>
<td>-</td>
</tr>
<tr>
<td>T₃</td>
<td>100</td>
<td>92</td>
<td>5.88</td>
<td>-</td>
<td>562.6</td>
<td>-</td>
</tr>
<tr>
<td>T₄</td>
<td>85</td>
<td>46</td>
<td>4.49</td>
<td>23.6</td>
<td>450.1</td>
<td>112.5</td>
</tr>
<tr>
<td>T₅</td>
<td>85</td>
<td>69</td>
<td>5.22</td>
<td>12.9</td>
<td>450.1</td>
<td>112.5</td>
</tr>
<tr>
<td>T₆</td>
<td>85</td>
<td>92</td>
<td>5.58</td>
<td>5.1</td>
<td>450.1</td>
<td>112.5</td>
</tr>
<tr>
<td>T₇</td>
<td>70</td>
<td>46</td>
<td>3.98</td>
<td>32.3</td>
<td>393.8</td>
<td>168.7</td>
</tr>
<tr>
<td>T₈</td>
<td>70</td>
<td>69</td>
<td>4.70</td>
<td>20.1</td>
<td>393.8</td>
<td>168.7</td>
</tr>
<tr>
<td>T₉</td>
<td>70</td>
<td>92</td>
<td>5.29</td>
<td>10.0</td>
<td>393.8</td>
<td>168.7</td>
</tr>
</tbody>
</table>
3.6. Partial budget analysis

For partial budget analysis, the price of grain wheat in the area is taken during time of harvest was 45 Birr kg$^{-1}$ and the price for water was 3.8 Birr m$^{-3}$ (Jansen, 2007). From Table 8, the highest net benefit is 89,168 Ethiopian birr (ETB) with 2.06 benefit cost ratio (B/C) was obtained at 100 % ETc and 92 kg ha$^{-1}$ of N treatment. Whereas, the minimum net benefit is 63,107 Ethiopian birr (ETB) with 2.39 benefit cost ratio (B/C) was obtained at 70 % ETc and 46 kg ha$^{-1}$ N treatments. Accordingly, an application of 85 % ETc and 69 kg ha$^{-1}$ of N fertilizer rate gave the optimum net benefits and best benefit cost ratio (B/C) of 84,572ETB and 2.57 respectively.

Table 8. Partial budgeting and MRR analysis for economic wheat production

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Water/L ETc%</th>
<th>N-level kg ha$^{-1}$</th>
<th>TC (ETB/ha)</th>
<th>UTY (kg/ha)</th>
<th>ATY (kg/ha)</th>
<th>GB (ETB/ha)</th>
<th>NB (ETB/ha)</th>
<th>B/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>T$_1$</td>
<td>100</td>
<td>46</td>
<td>34,918</td>
<td>4,990</td>
<td>4,491</td>
<td>112,275</td>
<td>77,357</td>
<td>2.22</td>
</tr>
<tr>
<td>T$_2$</td>
<td>100</td>
<td>69</td>
<td>38,327</td>
<td>5,230</td>
<td>4,707</td>
<td>117,675</td>
<td>79,348</td>
<td>2.07</td>
</tr>
<tr>
<td>T$_3$</td>
<td>100</td>
<td>92</td>
<td>43,132</td>
<td>5,880</td>
<td>5,292</td>
<td>132,300</td>
<td>89,168</td>
<td>2.06</td>
</tr>
<tr>
<td>T$_4$</td>
<td>85</td>
<td>46</td>
<td>30,680</td>
<td>4,490</td>
<td>4,041</td>
<td>101,025</td>
<td>70,345</td>
<td>2.29</td>
</tr>
<tr>
<td>T$_5$</td>
<td>85</td>
<td>69</td>
<td>32,878</td>
<td>5,220</td>
<td>4,698</td>
<td>117,450</td>
<td>84,572</td>
<td>2.57</td>
</tr>
<tr>
<td>T$_6$</td>
<td>85</td>
<td>92</td>
<td>39,100</td>
<td>5,580</td>
<td>5,022</td>
<td>125,550</td>
<td>86,450</td>
<td>2.21</td>
</tr>
<tr>
<td>T$_7$</td>
<td>70</td>
<td>46</td>
<td>26,443</td>
<td>3,980</td>
<td>3,582</td>
<td>89,550</td>
<td>63,107</td>
<td>2.39</td>
</tr>
<tr>
<td>T$_8$</td>
<td>70</td>
<td>69</td>
<td>30,400</td>
<td>4,700</td>
<td>4,230</td>
<td>105,750</td>
<td>76,753</td>
<td>2.52</td>
</tr>
<tr>
<td>T$_9$</td>
<td>70</td>
<td>92</td>
<td>36,870</td>
<td>5,290</td>
<td>4,761</td>
<td>119,025</td>
<td>82,155</td>
<td>2.23</td>
</tr>
</tbody>
</table>

TC= Total cost, UTY= Unadjusted total yield, ATY= Adjusted total yield, GB= Gross benefit, NB =Net benefit, and B/C= Benefit cost ratio.

4. Conclusion and Recommendation

The combination effect of nitrogen fertilizer rate and irrigation water levels on wheat yield and yield component were investigated at the experimental field from 2021-2022 GC. From the study result, irrigation and nitrogen levels had a substantial impact on wheat grain yield. Increasing the application rate of nitrogen fertilizer from 46 to 92 kg ha$^{-1}$ and water level from 70 % ETc to full irrigation maximize yields of wheat. On the other hand, reducing water level from 100 to 85% ETc and N-fertilizer rate from 92 to 69 kg/ha was not reduce the yield significantly; rather it saved water and economic advantage. The combination of 85 % ETc and 69 kg/ha of N fertilizer rate is the best treatment to obtain an optimum yield and maximum B/C ratio in the study area. Therefore it was recommended to farmer of Tibla irrigation scheme to use combination of 85 % ETc irrigation and 69 kg/ha nitrogen fertilizer rate to enhance production and productivity of wheat in the study area. It was also recommended that if similar experiment will be conducted on other irrigation scheme to identify the combination effects of water level and fertilizer rate.
Declarations

Source of Funding

This research did not receive any grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing Interests Statement

The authors declare no competing financial, professional, or personal interests.

Consent for publication

The authors declare that they consented to the publication of this research work.

Acknowledgements

The authors would like to acknowledge Oromia Agricultural Research Institute for funding and Asella Agricultural Engineering Research Center for all support to undertake this research.

References

