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1. INTRODUCTION 

The common carotid artery (CCA) is the one that supplies the 

human head, specifically the front part of the brain, and neck, 

with oxygenated blood. Like other arteries, which purpose 

relies in the supply of blood from the heart, as the coronary 

arteries, the carotid is also in risk of developing several 

diseases, like atherosclerosis, known as the “hardening of the 

artery”, after the accumulation of fatty substances, i.e. 

lipoproteins, in the artery walls. This accumulation is known 

as “plaque” and decreases the blood supply. The carotid 

artery, specifically at the bifurcation, which separates the 

external (ECA) and internal (ICA) carotid arteries, is one very 

susceptible to atherosclerosis, mainly because of the high 

hemodynamic forces that can be found at the bifurcation and 

branching structures. 

 

Non-invasive ultrasound imaging has been widely used in the 

diagnosis of cardiovascular diseases, in particular concerning 

the atherosclerosis with the evaluation of the intima-media 

thickness (IMT), assessing the distance between the lumen of 

the carotid artery, that is, where the blood flows, and the inner 

boundary of the adventitia. This measure, and consequent 

diagnosis of atherosclerosis among other cardiovascular 

diseases, is performed with the aid of B-mode ultrasound 

imaging, requiring the detection of not only the lumen 

boundaries but as well as of both the near and far adventitia. 

Therefore, it has been and continues to be a great interest in 

the efficient automatic segmentation of the adventitia and 

lumen boundaries in B-mode ultrasound images of the carotid 

artery. According to Halenka (1999), in this type of images 

the carotid adventitia appears as two almost parallel lines, 

known due to their echogenic characteristics, separated in the 

middle by a hipoechogenic space, known as the “double line” 

pattern (Halenka, 1999). 

 

Ultrasound B-mode imaging has been the most widely used 

technique in image-based cardiovascular diagnosis due to the 

fact of the carotid being a superficial artery and quite suitable 

for this type of imaging. However, B-mode images present 

difficulties, specifically in the segmentation of the structures 

involved, due to several imaging characteristics like low 

contrast, speckle noise, echo shadows and artifacts, which 

lead to images of very poor quality that usually require the 

interaction of an expert. Some works that use several 

statistical distributions can be found in the literature to cope 

the granular speckle noise in non-compressed ultrasound 

signals, like, for example, the Rayleigh distribution (Wagner 

et al., 1983; Sarti et al., 2004) and K-distribution (V.Dutt et 

al., 1994; R.C. Molthen et al., 1993). However, most of the 

signals that are actually used in ultrasound imaging and 

medical practice are log-compressed signals, which are 

therefore, unsuitable for the application of statistical 

distributions because of the reduced intensity range that is 

characteristic of this type of signal. In 2006, Noble (Noble et 

al., 2006) described the success of texture segmentation 

techniques in the classification of breast masses and liver and 

kidney tissues in ultrasound images. However, the 

segmentation of the carotid artery tends to be more difficult 

due to the extremely low degree of discrimination of this 

structure in the usual ultrasound B-mode images. 

AB ST RACT  

A new algorithm is proposed for the segmentation of the lumen and bifurcation boundaries of the carotid artery in B-mode ultrasound images. It uses 

the hipoechogenic characteristics of the lumen for the identification of the carotid boundaries and the echogenic characteristics for the identification 

of the bifurcation boundaries. The image to be segmented is processed with the application of an anisotropic diffusion filter for speckle removal and 

morphologic operators are employed in the detection of the artery. The obtained information is then used in the definition of two initial contours, one 

corresponding to the lumen and the other to the bifurcation boundaries, for the posterior application of the Chan-vese level set segmentation model. A 

set of longitudinal B-mode images of the common carotid artery (CCA) was acquired with a GE Healthcare Vivid-e ultrasound system (GE 

Healthcare, United Kingdom). All the acquired images include a part of the CCA and of the bifurcation that separates the CCA into the internal and 

external carotid arteries. In order to achieve the uppermost robustness in the imaging acquisition process, i.e., images with high contrast and low 

speckle noise, the scanner was adjusted differently for each acquisition and according to the medical exam. The obtained results prove that we were 

able to successfully apply a carotid segmentation technique based on cervical ultrasonography. The main advantage of the new segmentation method 

relies on the automatic identification of the carotid lumen, overcoming the limitations of the traditional methods.  

Keywords: New algorithm, Ultrasound images, Common carotid artery (CCA), Segmentation and B-mode. 
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Ultrasound imaging represents an extreme and complex 

challenge to the automatic segmentation algorithms, as for the 

reasons described earlier, as for the amount of boundary 

edges that may be missing in the image, leading to gaps in the 

vessel boundaries. Additionally, as different anatomical 

regions of the carotid can be acquired in ultrasound B-mode 

imaging, and also due to the variability of its shape among 

subjects, a model based segmentation is not appropriate. 

Despite these difficulties, there has been an increasing interest 

in ultrasound imaging-based medical diagnosis as 

consequence of the technological advances verified in this 

methodology, not only in terms of image quality, but also 

because of its non-invasive characteristics and low cost (Rui 

Rocha et al., 2011). 

 

The desired segmentation can be addressed by two main 

steps: i) the definition or estimation of a region of interest 

(ROI) of the carotid artery in the B-mode ultrasound image 

and ii) the delineation of the boundaries of the structure 

desired, which depends on the ROI defined and can be the 

artery lumen, intima or adventitia. For this reason, we may 

consider that the two steps are not independent from each 

other, since the correct delineation of the artery wall in the 

segmentation algorithm is strictly connected to the right 

definition of the ROI. 

 

In this paper, a method is proposed for the automatic 

identification of the lumen region and consequent 

segmentation of the lumen boundaries in longitudinal B-mode 

images of the CCA. The method searches for hipoechogenic 

structures in the input image, and the lumen region of the 

CCA is identified based on mean and standard deviation 

calculations concerning the image intensity. Afterwards, the 

lumen and bifurcation boundaries of the carotid artery are 

identified through the application of a geometrical model, in 

particular, using the Chan-Vese level set model. The method 

is robust to speckle noise, does not require human interaction 

and can adjust well the segmentation contours to the lumen 

boundaries represented in the input images. 

 

2. EXISTING METHOD 

Carotid Artery Segmentation Using Graph Cut Algorithm 

This paper proposes a scheme for segmenting carotid artery 

ultrasound images using graph cuts segmentation approach. 

Region homogeneity constraints, edge information and 

domain specific information are incorporated during the 

segmentation process. A graph with two terminals (source and 

sink) is formed by considering every pixel as a graph node. 

Each pair of neighbouring nodes is connected by a weighted 

edge, where the weight is set to a value proportional to the 

intensity of the gradient along them. Moreover, each graph 

node is connected to the source and the sink terminals with 

weights that reflect the confidence that the corresponding 

pixel belongs to the object and the background, respectively. 

The segmentation problem is solved by finding the minimum 

cut through the constructed graph. Experiments using a 

dataset comprised of 40 B-mode carotid artery ultrasound 

images demonstrates good segmentation results with (on 

average) 0.677 overlap with the gold standard images, 0.690 

precision, and 0.983 sensitivity. 

Image segmentation can be formulated as an energy 

minimization problem. The minimization of such an energy 

function corresponds to partitioning image pixels into object 

and background segments. Several optimization techniques 

can be used to minimize such energy function. The success of 

the graph cuts based segmentation schemes can be attributed 

to the combination of both region and edge information 

during the segmentation process. The region information 

forces the homogeneity of the segmented area. Meanwhile, 

the incorporation of the edge information prevents the leak 

(i.e. overgrowth of the segmented region) that generally 

appears in most region-based segmentation schemes. 

 

 
Pre-processing Stage 

Ultrasound images suffer from several drawbacks. One of 

these drawbacks is that ultrasound images have relatively low 

contrast. Another severe problem is the presence of random 

speckle noises, caused by the interference of the reflected 

ultrasound waves. These factors severely degrade any 

automated processing and analysis of the images. Hence, it is 

crucial to enhance the image quality prior to any further 

processing. In this stage we try to overcome these problems 

by performing two pre-processing steps. The first is a 
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histogram equalization step to increase the dynamic range of 

the image gray levels. In the second step, the histogram 

equalized image is filtered using a median filter to reduce the 

amount of the speckle noise in the image. It was empirically 

found that a 3×3 median filter is suitable for the removal of 

most of the speckle noise without affecting the quality of the 

edges in the image. 

 

Graph Construction and Minimum Cut Finding 

In this stage, the pre-processed image is segmented using 

graph cuts-based segmentation approach, described in 

Section 2. First, a two terminal weighted graph is constructed 

for the image under consideration. Second, the weights of 

terminal-links and neighbour-links are set. Finally, the 

minimum cut through the graph is generated using Boykov et 

al. algorithm [35]. Graph nodes that remain connected to the 

source node represent object pixels, whereas nodes connected 

to the sink node represent background pixels. 

 

The weight of a terminal-link is set to a value that reflects our 

confidence that the given pixel belongs to either the object or 

the background. Due to the nature of the carotid artery 

ultrasound images, the area inside the artery (which is the 

object of interest) is darker than the rest of the image. Hence, 

pixels with intensities less than a certain object threshold 

µobject are connected by terminal links to both source and 

sink nodes with weights equal to one and zero, respectively. 

Meanwhile, pixels with intensities greater than a background 

threshold µbackground are connected by terminal links to the 

source and sink nodes with weights equal to zero and one, 

respectively. This way, the domain specific information is 

considered. All other nodes are connected to source and sink 

nodes with links that have certain weights. A terminal link 

weight (for a given node) is calculated by a non-negative 

decreasing function of the absolute differences between the 

node’s intensity and the object and the background 

thresholds, µobject, µbackground, respectively (this 

represents a region homogeneity constraint). In the proposed 

scheme we used an exponential function to calculate the 

terminal-link weights, as described in Equation (1) and 

Equation (2). 

 

 

Where, WP,Source and WP,Sink are the weights of the 

terminal link connecting node P to the source and the sink 

nodes, respectively. I P is the intensity of pixel P. µobject and 

µbackground are the object and the background thresholds, 

respectively. It is a regulating term, used to control the rate of 

decay for the exponential weight function. This regulating 

term allows the weight function to cope up with the fuzzy (or 

defused) boundaries of the objects within the ultrasound 

images. We empirically set µobject and µbackground to 10% 

of the lower and higher intensity ranges, respectively. 

Whereas a is set to 2% of the total intensity range. Hence, for 

8-bit images, we set µobject to 25, µbackground to 230 and a 

to 5. Note that, in ultrasound images, the object of interest 

appears darker than the background. 

 

We used the 8-connectivity neighbourhood system, as shown 

in Figure 3, to assign the neighbour-link weights. These 

weights are set based on local gradients according to Equation 

(3), 

 
 

Where, WP,Q is the weight of the neighbour-link connecting 

nodes P and Q, IP and I Q are the intensities of pixels P and Q, 

respectively, and s is the standard deviation of the gradient 

magnitude through the image. Note that neighbour-link 

weights represent the edge information. By finding the 

minimum cut through the graph edges, a binary image, which 

separates the object from the background, is formed. The 

extracted object contains the area inside the carotid artery and 

some dark objects that usually exist in a given ultrasound 

image. The user can specify a seed point within the artery to 

extract the artery wall and neglect all other objects which are 

outside the region of interest. 

 

Post-processing Stage 

The objective of this stage is to smooth the edges of the 

segmented area and to fill any gaps or holes that may present 

due to the presence of noise in ultrasound images. Hence, we 

used a morphological opening operation [36] [37] with a 

rounded square structuring element of size W. The size of the 

structuring element can be adjusted, based on the maximum 

gap size in the segmented area, according to Equation (4), 

 

 
 

Where, W is the size of the structuring element and h is the 

maximum gap size that exists in the segmented image. We 

empirically found that generally, the maximum gap size does 

not exceed two pixels. Hence we used a 5×5 structuring 

element. 

 

Boundary Extraction Stage 

The objective of this stage is to extract the boundaries of the 

segmented regions. Various edge detection schemes can be 

used for this purpose [36]. In our system, we use a 

morphological-based contour extraction mechanism [36], 

[37]. First, the image produced by the previous stage is 

morphologically eroded using a 3×3 rounded square 
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structuring element. Then, the eroded image is subtracted 

from the non-eroded image to obtain the boundary of the 

segmented region, which represents the artery wall. This 

operation can be described by Equation (5), 

 

 
 

Where, A is the post-processed image and B is the structuring 

element. Finally, the extracted contour is superimposed on the 

histogram equalized image to produce the final output of the 

proposed scheme. 

 

3. PROPOSED METHOD 

 

Block diagram 

 
 

Noise removal using median filter 

The median filter is also the simpler technique and it removes 

the speckle noise from an image and also removes pulse or 

spike noise.  The Median Filter is performed by taking the 

magnitude of all of the vectors within a mask and sorting the 

magnitudes. The pixel with the median magnitude is then used 

to replace the pixel studied. The Operation of median filter 

can be expressed as: 

 

 
 

Where Sxy represents the set of coordinates in a rectangular 

sub image window, centered at point (x,y), and median 

represents the median value of the window. 

 

Morphological operation for background elimination 

Methods of mathematical morphology act based on the 

structural properties of objects. These methods use 

mathematical principles and relationships between categories 

to extract the components of an image, which are useful in 

describing the shape of zones. Morphological operators are 

nonlinear, and two sets of data are their input. The first set 

contains the original image and the second one describes the 

structural element (mask). The original image is binary or in 

gray level and the mask is a matrix containing zero and one 

values. It is after applying the final image to the 

morphological operators that a new value for each pixel is 

obtained through sliding the mask on the original image. 

Value 1 in each mask indicates effectiveness and value 0 

indicates ineffectiveness in the final image. Different formats 

can be selected to form a mask. Figure 1 shows a disk-shaped 

mask with radius of 4 (9 * 9 matrix). 

 

Morphological Operators 

If A (x, y) and B (u, v) describe the gray-level image matrix 

and the structural element matrix respectively, erosion and 

dilation operators are defined as (1) and (2): 

 

 
The erosion operator reduces the size of objects. This 

operator increases the size of holes in an image and removes 

very small details of that image. Removing bright areas under 

the mask makes the final image looks darker than the original 

image. The dilation operator acts in reverse; in other words, it 

increases and decreases the size of objects and holes in the 

image respectively. The opening operator is equivalent to the 

application of the erosion and dilation operations on the same 

image respectively (Equation (3)) while the closing operator 

acts in reverse (Equation (4)): 

 

 
The opening operator removes weak connections between 

objects and small details while the closing operator removes 

small holes and fills cracks. 

 

Selecting a Proper Mask 

Selecting a mask in proper shape and size to take 

morphological actions has a key role in achieving desired 

results and reducing calculation time. In general, the shape 

and size of a mask are arbitrarily selected; however, the 

selected mask should be in appropriate shape and size for 

various diagnosis purposes. Disk-shaped masks (Figure 1) are 

more commonly used for medical images than other masks. 

As stated before, since disk-shaped masks are independent of 

changes in rotation, they are chosen for medical images. Since 

big or small masks strengthen or weaken various parts of an 

image, it is impossible to gather detailed information on the 

contrast of different images using only one structural element. 

This is why one mask in a particular shape and size may not 

appropriate for other applications [9]. In the proposed 

method, the change in shape and size of the mask continues 

until an appropriate result obtained. It should be mentioned 

that past experiences have key roles in selecting proper masks 

to take morphological actions. 

 

Top-Hat Transforms 

These transforms are used to enhance the contrast of images 

through morphological methods and are in two general types: 

Top-Hat transform is obtained by subtracting the opening of 

the original image from the image itself (Equation (5)) and 

Bottom-Hat transform is obtained through subtracting the 

original image from its closing (Equation (6))  
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Top-Hat and Bottom-Hat transforms are generally known as 

Open Top-Hat or White Top-Hat and Close Top-Hat or Black 

Top-Hat respectively. In many papers, Top-Hat is used to 

refer to both kinds of hat transforms. These transforms are 

named Top-Hat after Cylinder Hat. 

 

Segmentation using Active disc optimization 

Active contours, also called snakes, are used extensively in 

computer vision and image processing applications, 

particularly to locate object boundaries .Active contours, or 

snakes, are curves defined within an image domain that can 

move under the influence of internal forces coming from 

within the curve itself and external forces computed from the 

image data. The essential idea is to evolve a curve or a surface 

under constraints from image forces so that it is attracted to 

features of interest in an intensity image. Snakes are widely 

used in many applications, including edge detection, shape 

modelling, segmentation, and motion tracking. 

 

Boundary based level set methods presented thus far provide 

efficient and stable algorithms to detect contours in a given 

image. The presented methods handle changes in topology 

and provide robust stopping terms to detect the goal contours. 

However, structures such as interior of objects, e.g. interior of 

discs are not segmented. Because of level set formulation the 

final contours are always closed contours. In addition, in 

images where the objects object boundaries are noisy and 

blurry these methods face some difficulties. Some recent 

works in active contours consider these issues. There are 

some objects whose boundaries are not well defined through 

the gradient. For example, smeared boundaries and 

boundaries of large objects defined by grouping smaller ones.  

 

Step1: Identification of the image area and consequent 

reduction of the image size 

As a first step, we intend to reduce the image area, eliminating 

any possibility of detecting unwanted features that do not 

belong to the ultrasound data to be analyzed. This procedure 

also reduces the time required in the posterior steps of image 

processing and segmentation. The reduction of the image data 

consists in the definition of a rectangular area involving the 

carotid artery (Golemati et al., 2007). With this goal in mind, 

four points are identified by the following procedure: (1) 

Morphological opening of the original image, using a circular 

element to remove unwanted objects such as characters; (2) 

Image binarization, as such, the areas outside the region of the 

ultrasound data to be analyzed are discarded; (3) Finally, the 

four points that correspond to the first and last nonzero lines 

and columns of the binary image are identified. These points 

are the vertices of the rectangular area in which all the further 

tasks of image processing and segmentation are performed. 

 

Lumen region identification 

This procedure is based on the study performed by Liboni et 

al. (2007) to develop a computer-based tracing of the carotid 

artery. According to these authors, the carotid characteristics 

in an ultrasound image can be addressed using a model of 

variable intensity distribution over the carotid regions. It is 

precisely this idea that is used here for the automatic 

identification of the lumen of the carotid artery. Pixels 

belonging to the lumen region of the carotid artery are those 

characterized by both low mean and standard deviation 

intensity values (Liboni et al. (2007)). In order to proceed 

with this identification, 2D histograms are built: For each 

pixel of the image to be analyzed, it is calculated within a 

neighborhood the mean and standard deviation intensity 

values; both values are then normalized and grouped into a set 

of classes. 

 

A row-wise intensity distribution is built for each column of 

the ultrasound image region to be analyzed so the pixels 

corresponding to the carotid artery can be identified. 

However, the image data must be previously processed for 

speckle noise removal and attenuating the high intensity noisy 

points in the intensity distribution; in this task, a Gaussian 

low-pass filter is used. As mentioned previously, pixels 

belonging to the lumen region of the carotid artery are those 

characterized by their low mean and standard deviation 

intensity values. Having this into consideration, those pixels 

are identified in the intensity distributions built as being those 

related to the minimum values presented, which are frequently 

between the local maximums corresponding to the near and 

far adventitia layers, or corresponding to the walls of the ICA 

and ECA, or in the interval between these two borders, if it is 

considered a column of the image containing pixels belonging 

to the carotid bifurcation. Based on Liboni et al. (2007) 

approach, the identification process starts from the bottom of 

the image to be analyzed, i.e. from the highest row index, and 

moves upwards along the rows in order to correctly identify 

the first pixel of the first maxima which as possibly 

corresponds to the far adventitia of the carotid that is usually 

associated to the brightest structure of the ultrasound image of 

the carotid artery. Having this first pixel estimated as possibly 

belonging to the far adventitia, the method continues the 

lumen identification moving upwards and searching for a 

pixel possible belonging to the lumen region. Taking into 

account the row of the pixel that corresponds to the far 

adventitia, the pixel possibly belonging to the lumen is the 

first minima point after the far adventitia pixel. Also, its 

neighborhood mean and standard deviation intensity values 

must match the chosen criteria for the 2D histogram. 

 

Lumen edges identification 

Having obtained the correct identification of a group of pixels 

belonging to the lumen of the carotid artery presented in the 

input image, the definition of a suitable mask for a level 

set-based segmentation is possible. However, some 

processing techniques must be applied to the image to be 

segmented in order to assure the robustness of the 

segmentation process. Hence, an anisotropic diffusion filter is 

applied in order to attenuate the high amount of speckle noise 

that is commonly present; the filter proposed in (Perona and 

Malik, 1990) with a 2D network structure of 8 neighboring 

nodes for diffusion conduction was chosen to accomplish 

such smoothing. Then, it is applied a morphological closing 
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operator in order to merge small “channels” and “openings”. 

Thirdly, a threshold based on the value defined based on the 

image histogram is performed. This threshold results in a 

binary image on which is applied the Sobel gradient operator 

in order to identify the edge points. The binary image 

obtained with the application of the Sobel operator combined 

with the information relevant to the pixels that belong to the 

lumen region of the carotid allow the identification of the 

edges correspondent to the superior and inferior wall of the 

lumen of the carotid artery. Figure 2E shows that 

combination; in this figure, it can be observed the pixels of the 

lumen candidate string with the highest column value (located 

in the rightest part of the image), which can be searched in the 

binary image resulted from the Sobel operator, the pixels 

above and below (at the same column) with value 1 (one). 

Having the row and column of these two pixels found, one 

belonging to the superior lumen edge and the other to the 

inferior one, it is possible to trace the remainder of the edges 

in the Sobel binary image and store the coordinates of each 

pixel in a string. As such, two strings are built having the 

coordinates of each pixel belonging to the superior and 

inferior lumen edges. Posteriorly, a new string is defined 

containing the pixels belonging to the bifurcation edge in the 

binary image, knowing that the bifurcation is located between 

the superior and inferior walls of the carotid. Finally, two 

masks are defined for posterior application of the geometrical 

model of Chan-Vese for the segmentation of both bifurcation 

and common carotid artery walls, as shown in Figure 4. These 

masks are created with the information of the superior and 

inferior walls of the carotid artery, as well as its bifurcation, 

by filling its interior with pixels of value 1 (one), and the 

outside with pixels of value 0 (zero), creating a binary image. 

 

Segmentation of the lumen and bifurcation boundaries of 

the carotid artery using the Active disc method 

It is a powerful segmentation method that can be used to 

detect the lumen boundaries of the carotid artery using the two 

masks built in the previous step as initial contours. This 

segmentation approach is well known for its high flexibility 

and accuracy as is a region-based model independent of 

gradient information. This independence makes the 

segmentation robust to cases in which gaps exist in the 

boundaries of the carotid as usually occur. The segmentation 

both of the lumen and bifurcation boundaries of the carotid 

artery is based on the work developed by Lankton and 

Tannenbaum (2008) that defined a local-based framework 

according to the active contour moves according to an internal 

energy defined in the Chan-Vese approach using a constant 

intensity model. The framework starts with the input of an 

initial contour, here, one of the masks built in the previous 

step, and the definition of a signed distance function defined 

as:  

 
Where m represents the initial contour and is the Euclidean 

distance transform of the considered binary image, assigning 

for each pixel, the distance between them and the nearest 

nonzero value. Let C represent a closed contour, as the zero 

level of, i.e., { ( ) }, where its interior is expressed respectively 

as: 

 
 

Having and as independent variables representing the 

coordinates of a pixel in the domain Ω of an image, the 

following equation represents a function defining a region of 

interest (ROI) of radius, with value 1 (one) inside and 0 (zero) 

outside: 

 

 
 

With eq. (4), the energy functional can be defined as: 

 

 
 

Where ( ) prevents the development of new contours by 

ensuring that C does not undergo sudden changes in its 

geometry. On the other hand, it will allow certain parts of the 

contour C to separate or combine within each other. Each 

pixel in this term is masked to ( ) ensuring that only the local 

information surrounding C will be used. 

The smoothness of the contour C is assured through the 

application of a regularization term that penalizes its arc 

length. The weight of this penalty is controlled by the 

parameter in the new equation of the energy functional: 

 

 
 

Lanktom and Tannenbaum (Lanktom and Tannenbaum, 

2008) proposed the introduction of specific energies into the 

generic framework described previously, including the 

Chan-Vese energy that is expressed as: 

 

 
The corresponding Chan-Vese internal energy function is 

based on the local mean intensities and, instead of and: 
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The Chan-Vese energy function finds its minimum when the 

interior and exterior of the curve are closer to the global mean 

intensities and , while in the localized version, the minimum is 

obtained when they are closer to the local mean intensities and 

. 

For the segmentation of the bifurcation boundaries, the mask 

illustrated in Figure 3g is chosen as the initial contour. The 

level set for the segmentation of these boundaries must be 

flexible in order to reach the limit of the bifurcation walls. On 

the other hand, for the segmentation of the lumen boundaries, 

the mask illustrated in Figure 3f is defined and the 

development contour C has to be properly controlled and 

somehow attenuated in order to prevent its development 

towards other structures near the carotid artery. The circular 

ROI ( ) has also to be chosen narrow in order to prevent larger 

intensity variations during the contour C development along 

the Chan-Vese energy minimization process. 

 

Contour smoothness 

Finally, the obtained contours must be smoothed: Firstly, 

through a cubic spline interpolation and secondly, by 

projecting all the resulting points of the contour towards a 

local regression line. Once again, a ROI is defined for each 

point of the contour, regarding the number of points in the 

neighborhood that contribute for the computation of the local 

regression line. In this process, for each pixel we defined an 

8-connected-neighborhood for its computation. 

 

4. RESULTS 
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5. CONCLUSION 

We were able to successfully apply a carotid segmentation 

method based on cervical ultrasonography. The main 

advantage of the novel segmentation method relies on the 

automatic identification of the carotid lumen, overcoming the 

limitations of the traditional methods. As a future work, we 

will test our method using more B-mode ultrasound images, 

including images of carotid arteries of patients with severe 

atherosclerosis. With the obtained contours from the 

segmentation of the carotid artery, 3D models will be building 

using algorithms of data interpolation, geometrical meshing 

and smoothing. With additional images acquired by 

computerized angiography, we expect to be able to building 

accurate 3D models for carotid arteries that can be posteriorly 

deformed and adjusted to the data obtained with the 

segmentation of the lumen and bifurcation structures of the 

carotid artery in ultrasound B-mode images. This will allow 

the achievement of truthful 3D models for carotid arteries 

from B-mode ultrasound images.  
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