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AB ST R ACT  

The applications of fibre bundles are growing by the day. As of today, fibre bundles constitute the framework of choice for explaining general 

relativity and gauge theories in particle physics. Theories of economics and finance are also being premised on fibre bundles.  This article attempts to 

provide a pedagogical introduction to fibre bundles in a manner that would enable the physicist to understand the structure purely at a conceptual 

level without getting entangled with extensive mathematical jargon.  
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1. INTRODUCTION 

Fibre bundles constitute the framework of choice for 

explaining general relativity and gauge theories in particle 

physics. Theories of economics and finance are also being 

premised on fibre bundles.  

 

However, literature on fibre bundles can be segmented into 

(i) that which approaches the concept purely from the 

mathematical viewpoint, emphasizing the rigor rather than 

the philosophy underlying the concept and (ii) that which 

takes the acquaintance with fibre bundles for granted and get 

straight into the applications mode. The fallout of this 

segmentation is that both segments cover fibre bundles at the 

conceptual level only marginally. The coverage is, nowhere 

near adequate for the novice to get sufficiently familiarized 

with the intricacies of fibre bundles and hence, appreciate the 

nuances that have led to the origin and development of the 

concept and attempt to apply it to novel physical problems. 

This article attempts to fill this gap by introducing and 

explaining fibre bundles in a manner that would enable the 

reader to understand the structure purely at a conceptual level 

without getting entangled with extensive mathematical 

jargon to the extent possible.  

 

We shall begin our development of the formalism of fibre 

bundles with the definition and explanation of topological 

manifolds and carry it through to encompass differentiable 

manifolds, differentiable maps, tangent bundles, principal 

and associated bundles, connections, curvature and parallel 

transport culminating in the definition of covariant 

derivatives (a cardinal structure in general relativity) 

highlighting all the relevant mathematical structures on the 

way to the extent they find application in contemporary 

physics. It is strongly emphasized that this is a pedagogical 

note aimed at addressing certain gaps in the existing literature 

and no claim to originality is made.  

2. TOPOLOGICAL MANIFOLDS 
2.1 Topological Manifolds: Physics is largely concerned 

with the study of systems that obey certain physical laws of 

motion. It becomes necessary to describe the positions of all 

the objects in the system in space-time by a set of numbers, or 

coordinates. These numbers (coordinates) may not be 

independent of each other and may instead satisfy some 

relations or constraints. These relations, put in the form of 

equations, can be interpreted to define a manifold in some 

Euclidean space. We, thus, define a topological manifold as: 

Let M is a topological space. Then, M is called a topological 

manifold of dimension n or a topological n-manifold if it has 

the following properties: (a) M is a Hausdorff space i.e. for 

every pair of points p,q ∈M, there are disjoint open subsets 

U,V⊂M such that p∈U and q∈V; (b) M is second countable 

i.e. there exists a countable basis for the topology of M; (c) M 

is locally Euclidean of dimension n i.e. every point of M has a 

neighborhood that is homeomorphic to an open subset f of R
n
. 

In other words, for each p∈M, we can find the following:(i) 

an open set U⊂M containing p; (ii) an open set Ũ ⊂ R
n
; and 

(iii) a homeomorphism φ:U→ Ũ. 

 

Requiring a manifold to have the Hausdorff property ensures 

that one-point sets are closed and limits of convergent 

sequences are unique. Similarly, second countability has 

important consequences related to the existence of partitions 

of unity. Furthermore, both the Hausdorff and second 

countability properties are inherited by spaces that are built 

out of other manifolds e.g.  subspaces and product spaces. It, 

therefore, follows that any open subset of a topological 

n-manifold is itself a topological n-manifold (with the 

subspace topology). Similarly, any product of two manifolds 

is also a manifold equipped with the product topology. 

 

2.2 Coordinate Charts & Atlases on Topological Manifolds: 

Let M be a topological n-manifold. A coordinate chart on M 

is a pair (U,φ), where U is an open subset of M and φ: U→ Ũ 

⊂ R
n
 is a homeomorphism from U to an open subset Ũ 

=φ(U)⊂ R
n
. 

 

By definition of a topological manifold above, each point 

p∈M is contained in the domain of some chart (U,φ). 

Furthermore, if φ(p)=0, we say that the chart is centered at p. 

The compatibility condition of two coordinate charts (U,φ) 

and (V,ψ) on their region of overlap U V ifU V  is 

expressed as the requirement of the composite map 
1 ( ) ( ): U V U V       (called the coordinate 

transition map from φ to ψ) being continuous (Figure 1).    

 

   
1n nR U V

V

U V R

U

 

 

 


    



 

Figure 1 

 

For a given topological manifold M, the set of charts A such 

that 
 ,U A

A U M
 

   i.e. that comprise of charts covering 

the entire manifold M is called an atlas.   

 

Given a chart (U,φ), the set U is called a coordinate domain, 
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or a coordinate neighborhood of each of its points. If, 

additionally, φ(U) is an open ball in R
n
, then U is called a 

coordinate ball. The map φ is called a (local) coordinate map 

and the component functions  1,..., nx x of φ defined by

      1 ,..., np x p x p  are called local coordinates of p 

on U.  

 

Charts on topological manifolds are required only to verify 

that the set is a topological manifold as claimed. The chart is 

not part of the point-set definition. There is a largely 

unspoken assumption in the placing of topological charts on 

manifolds that the topology on the chart accurately reflects 

the native topological structure on the point set. In other 

words, if we define a continuous function or curve on the 

point set, then that function or curve will also be continuous 

within our mathematical model, and vice versa.  

 

A topological manifold atlas is not just an atlas of charts 

which are compatible with each other. The charts must be 

compatible with the “native topology”. And, if all charts are 

compatible with the native topology, they will consequently 

be compatible with each other. Thus compatibility of charts 

on their overlap (i.e. continuity of the transition maps) is a 

necessary condition, not a sufficient condition, for a valid 

atlas.  

 

A topological space  ,X  requires no extra structure in 

addition to the topology  in order to be declared a 

topological manifold. Additional structure such as an atlas is 

optional. Differentiable manifolds do need extra structure 

(such as an atlas) for their specification. However, in practice, 

it is usually the coordinate patches which specify the 

topology because the topology is too difficult to define 

without patches. For example, the topology on 

 2 3; 1S x R x    may be easily defined without charts. A 

metric function 2 2

0:d S S R   may be defined by 

    3

1 2
23

1, i i iR
d x y x y x y     for all 2,s y S . This 

is easily shown to be a metric (particularly since it is the 

restriction to S
2
 of the standard metric on R3). Using 

projections onto the three axial planes, it is readily seen that 

the induced topological space is a topological manifold.  

 

The important point to note from this example is that the 

topological space S
2
 is a topological manifold without 

providing charts. The provision of charts only serves to verify 

that the topology meets the requirements.  

 

But to meet the requirements of a differentiable manifold, an 

atlas of charts must be provided because a topological 

manifold has no specific differentiable structure unless an 

atlas is provided, and two atlases may very easily specify two 

incompatible differentiable structures on the same manifold. 

 

3. TOPOLOGICAL BUNDLES  

3.1 Topological Bundles: A topological bundle is a triple 

(E,π,M) where E and M are topological manifolds called the 

total space and base space respectively and π: E→M is a 

surjective continuous map, called the projection map, from 

the total space E to the base space M. Let p∈M, then the 

pre-image    ppreim p F   is called the fibre at the point p 

of M. 

 

The product manifold M F of topological manifolds M and 

F can be interpreted as a topological bundle by setting 

E M F   and the surjective continuous projection map π: 

E→M  by (m, f) m where m∈M and f∈F. The Mobius strip 

is another example of a topological bundle, but it is not a 

product manifold. 

 

3.2 Topological Fibre Bundle: Let E M  be a 

topological bundle. Let   preim p F  for some 

topological manifold F and for all p∈M. Then, E M  is 

called a topological fibre bundle with typical fibre F.  

 

3.3 Section of a topological fibre bundle: Let E M  

be a topological bundle. A map σ: M→E is called a section of 

the bundle if  Mid   . Thus, the map σ must necessarily 

map a given base point into the fibre at that point.  

 

In the special case of a product topological manifold, say, 

,E M F   if we define the projection map 

: M F M   as π(m, f) = m, then, the section map takes 

the form : M M F   defined by p (p,s(p)) for p∈M 

where s: M→F map. It is obvious that given p∈M, the map σ: 

M→E must necessarily map the point p∈M to a point in Fp, 

the fibre at p and no other fibre.  

 

3.4 Topological Sub-bundle and Restricted Bundle: The 

topological bundle 
'' 'E M  is a sub-bundle of the 

topological bundle E M  if E‟ and M‟ are respectively 

submanifolds of E and M and  '
'E

   is the restriction of 

π to E‟. Given a topological bundle E M and a 

sub-manifold N of M, the bundle    preim N
preim N N



   

is a restriction of the bundle E M  to N.  

 

3.5 Bundle Morphisms: Let the two topological bundles 

E M  and 
'' 'E M  be given along with the maps  

u:E→E‟ and f:M→M‟such that the Figure 2 commutes i.e.

‟ u f  . Then, (u,f) is called a bundle morphism.  

'

'

'

u

f

E E

M M

 



 



 

Figure 2 

 

3.6 Bundle Isomorphisms: Two topological bundles 

E M  and 
'' 'E M  are called isomorphic as 

bundles if there exists bundle morphisms (u,f) and (u
-1

,f
-1

) 

such that Figure 3 commutes. 
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1

1

'

'

'

u

u

f

f

E E

M M

 





   

Figure 3 

 

Such (u,f) are called bundle isomorphisms. These are the 

relevant structure preserving maps for topological bundles 

i.e. maps that preserve the structure of the fibres.  

 

3.7 Bundle Local Isomorphisms: A topological bundle

E M  is called locally isomorphic (as a bundle) to 

another topological bundle 
'' 'E M if for every p∈M 

there exists an open set U such that p∈U and that the 

restricted bundle    preim U
preim U U



  is isomorphic to 

'' 'E M . 

 

3.8 Trivial and Locally Trivial Topological Bundles: A 

topological fibre bundle E M is called a trivial 

topological bundle if it is isomorphic to the product bundle
1proj

M F M
 

  . Similarly, a topological bundle 

E M is locally trivial if it is locally isomorphic to some 

product bundle 1proj
M F M

 
  . Triviality implies local 

triviality but not conversely. The Mobius strip is locally 

trivial but not trivial. Locally, any section of a bundle can be 

represented as a map from the base space to the fibre. 

 

3.9 Pullback of a topological bundle: The pullback of a 

topological bundle E M is a topological bundle 
'' 'E M where:       ' : ', ' 'E m e M E e f m    ; 

 ' ', 'm e m ;  ',u m e e ; : 'f M M & : 'u E E  

constitute a bundle morphism. 

 

4. DIFFERENTIABLE MANIFOLDS  

4.1 Differentiable Manifolds: The definition of topological 

manifolds is sufficient for studying topological properties of 

manifolds, such as compactness, connectedness, simple 

connectedness, and the problem of classifying manifolds up 

to homeomorphism... However, in applications involving 

physics, we invariably need to be able to do calculus on such 

manifolds. For this purpose, we need to add extra structure to 

the manifold which would enable us to define the concept of 

differentiability of functions i.e. which functions on the 

manifold are “smooth” or differentiable and to what extent. 

 

To see what additional structure on a topological manifold is 

appropriate for discerning which functions are differentiable, 

consider an arbitrary topological n-manifold M. Each point in 

M is in the domain of a coordinate map φ: U→ Ũ ⊂ R
n
. A 

possible definition of a smooth function on M would be to say 

that f: M→R is smooth if and only if the composite function 
1 :f U R  is smooth in the sense of ordinary calculus. 

But this will make sense only if this property is independent 

of the choice of coordinate chart. To guarantee this 

independence, one needs to restrict attention to “smooth 

charts”. Since smoothness is not a homeomorphism invariant 

property, the way to do this is to consider the collection of all 

smooth charts as a new kind of structure on M. With this 

motivation in mind, we now describe the details of the 

construction.  

 

4.2 Chart Transition Map: Let M be a topological 

n-manifold. If (U,φ), (V,ψ) are two charts such that

U V  , the  map 1 ( ) ( ): U V U V       is 

called the transition map from φ to ψ. It is a composition of 

homeomorphisms, and is therefore itself a homeomorphism. 

Two charts (U,φ), and (V,ψ) are said to be smoothly 

compatible if either U V   or the transition map 
1  is a diffeomorphism (Since  U V  and 

 U V  are open subsets of R
n
, smoothness of this map is 

to be interpreted as having continuous partial derivatives of 

all orders).  

 

4.3 Atlas: We define an atlas for M to be a collection of 

charts whose domains cover the whole of M. An atlas A is 

called a smooth atlas if any two charts in A are smoothly 

compatible with each other. 

 

4.4 Maximal Smooth Atlas: We have defined a "smooth 

structure" on M by giving a smooth atlas, and defined a 

function :f M R  to be smooth if and only if 1 f  is 

smooth for each coordinate chart (U,φ) in the atlas. However, 

one issue remains unresolved. In general, there will be many 

possible choices of atlas that give the “same” smooth 

structure, in that they all determine the same collection of 

smooth functions on M. We could choose to define a smooth 

structure as an equivalence class of smooth atlases under an 

appropriate equivalence relation. However, it is more 

straightforward to make the following definition:  

 

A smooth atlas A on M is maximal if it is not contained in any 

strictly larger smooth atlas. This just means that any chart that 

is smoothly compatible with every chart in A is already in A. 

A smooth structure on a topological n-manifold M can, then, 

be defined as a maximal smooth atlas, A. A smooth manifold 

is a pair (M, A) where M is a topological manifold and A is a 

maximal smooth atlas on M. The following are two important 

properties of the maximal atlas in relation to a smooth 

manifold M: (a) Every smooth atlas for M is contained in a 

unique maximal smooth atlas; (b) Two smooth atlases for M 

determine the same maximal smooth atlas if and only if their 

union is a smooth atlas.  

 

4.5 Differentiable Functions and Maps: Although the 

terms “function” and “map” are technically synonymous, in 

studying smooth manifolds it is often convenient to make a 

slight distinction between them. We use the term “function” 

for a map whose range is R (a real-valued function) or R
k 
for 

some k >1 (a vector-valued function). The word “map” or 

“mapping” shall mean any type of map, such as a map 

between arbitrary manifolds. We begin by defining smooth 

real-valued and vector-valued functions. 
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If M is a smooth n-manifold, a function k:f M R is said to 

be smooth if for every p∈M, there exists a smooth chart (U,φ) 

for M whose domain contains p and such that the composite 

function 1 f  is smooth on the open subset 

  nU U R  . The function   k:f U R   defined by

   1  x ff x is called the coordinate representation of 

f. By definition, f is smooth if and only if its coordinate 

representation is smooth in some smooth chart around each 

point of the domain. Smooth maps have smooth coordinate 

representations in every smooth chart. 

 

The definition of smooth functions generalizes easily to maps 

between manifolds. Let M, N be smooth manifolds, and let 

:F M N be any map. We say that F is a smooth map if for 

every p∈M, there exist smooth charts (U, φ) containing p and 

(V,ψ) containing F(p) such that  F U V and the composite 

map 1   F  is smooth from φ(U) to ψ(V) (Figure 4). 

 

   
1dim dim

F

M F N

M U V N

R U V R 

 

 


  

 

  

 

Figure 4 

 

The previous definition of smoothness of real valued 

functions can be viewed as a special case of this one, by 

taking
kN V R  and k

k k:
R

id R R   . 

 

If :F M N is a smooth map, and (U, φ)  and (V, ψ) are any 

smooth charts for M and N respectively, we call 
1   F F  the coordinate representation of F with 

respect to the given coordinates. We establish below that the 

above definition of a smooth map is chart independent 

(Figure 5). 

 

1  

   

   

1

1

dim dim

dim dim

M F N

F

M F N

R U V R

M U V N

R U V R

 

 

 

 

 

 





  

 

  

 

  

1    

Figure 5 

 

For this purpose, we consider a map :F M N that is 

smooth so that for every p∈M, there exist smooth charts (U,φ) 

containing p and (V,ψ) containing F(p) such that  F U V

and the composite map 1   F F   is smooth from 

φ(U) to ψ(V)  Let us, now, consider a different pair of smooth 

charts  ,U   containing p∈M and  ,V   containing F(p) 

with  F U V from the same atlas. We need to establish 

that the composition 1F  is smooth i.e. that the map 

   1 1 1F       

     1 1 1F        is smooth. Now, the map 

1F   is smooth by assumption whereas the maps 

1    and 1   are both chart transition maps and hence, 

must also be smooth by definition of smooth atlases. It 

follows that the composition of these three maps will also be 

smooth. An important corollary to this chart independence 

proposition is that a manifold that is 
kC smooth can only 

guarantee chart independence of smoothness of a function 

upto 
kC  and no higher. This is because the chart transition 

maps being only 
kC  may not preserve the smoothness of 

higher orders of the map 1F   

 

4.6 Diffeomorphisms: A map :f M N is a 

diffeomorphism if f is bijective and both f and f
-1

are smooth 

maps. Diffeomorphisms are the isomorphisms or structure 

preserving maps of differentiable manifolds.  

 

4.7   Derivations: Given algebras A,B we define a derivation 

as a linear map D: A→B which additionally satisfies the 

Leibnitz rule viz.      , , ,
A B B

D f g Df g f Dg  . 

 

5. TANGENT & COTANGENT SPACES  
5.1 Space of smooth functions on a manifold: Let M be a 

smooth manifold. The set of all smooth functions from M to 

the set of real numbers R is denoted by  C M
. It can be 

endowed with a vector space structure over R by defining on 

 C M
 pointwise addition (+) viz.     f g p    f p

     , ,g p f g p MC M    and scalar multiplication (.), 

      .  , .   ,f p f p R f C M p M         where 

the LHS represent (+), (.) operations to be carried out in 

 C M
and the right hand sides represent the usual sum and 

product operations of reals R .  

 

5.2 The Directional Derivative: Let M be a smooth 

manifold and let : R M  be a smooth curve through a 

point pM. Without loss of generality, we may arrange for

 0p  . Then, the directional derivative operator at the 

point p along the curve γ is the linear map: 

  1

, :p RX C M

  defined by its action on an arbitrary 

 f C M as    ' 0f f R  .
,  pX  is also called the 

tangent vector to the curve γ at the point pM.  

 

5.3 Tangent Space: The set defined by

 , isa smooth curve throughp pT M X p M    i.e. the set 

of tangent vectors at a point in a smooth manifold to smooth 

curves through that point can be given a vector space 

structure over R by identifying suitable pointwise “addition 

(■)” and “scalar multiplication (●)” operations as 

■:TpM×TpM→TpM defined by (Xγ,p■Xδ,p)(f) = Xγ,p (f)+Xδ,p(f) 

and ●:R×TpM→TpM  defined by (λ●Xγ,p)(f) = λ.Xγ,p(f) 

Xγ,p,Xδ,pTpM, fC
∞
(M), λR and pM where the (+) 

and (.) on the RHS are in R.   
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We show that TpM is closed under the aforesaid operations. 

Let us take the case of (■). We need to establish that 

(Xγ,p■Xδ,p) TpM i.e. that there exists a curve : R M   

such that (Xγ,p■Xδ,p)(f) can be put in the form

 , ( ) ' 0pX f f  . Let (U,φ) be a chart containing the 

given point p of M. Let   : R I M  
 
by   1    

      .   –  p        Then,   1  0 

( (0)  (0) – )( )p   1       –p p p  

p .  Now,    , ' 0  pX f f   

         1    –  ' 0f p        

    1 . a pf   

           –  0. 'a a a p      

         1 .    .a af p p     

         1  . .a af p p    

    1

a pf          1

a pf    

       1 1' 0 ' 0f f      

       ' 0 ' 0f f      , , p pX f X f  
 
as 

required.  

 

To establish closure of TpM under (●), we define 

 : R I M  
 
by     1       

 
for λ R so 

that        1 1  0   0 p p         . Also 

   , ' 0pX f f       1  ' 0f    

         1 . '    0a

a f p    

         1 . . .. a af p p       

    1 .. a f p         1. ' 0f   

    . ' 0= f   , pX f .  

 

We, now, prove an important result that the dimension of 

TpM as a vector space is equal to the dimension of M as a 

topological manifold. We establish this proposition by 

explicitly constructing a vector space basis from a chart at an 

arbitrary point. For this purpose, consider a smooth manifold 

M of dimension m and let (U,x) be a chart centered at the 

given point p of M so that   mR
x p  0 . Let :a R M  , 

a=1,2,...,m be m curves through the point p such that 

  b b

a ax      and γa(0)= p. Let ,aa pe X  be the 

tangent vector to the curve γa at p. Then, for fC
∞
(M), we 

have    , ' 0
aa p ae f X f f      1 ' 0af x x 

        1 0 ' 0b

b a af x x x  

    1 b

b af x x p       1

a f x x p 
a

p

f
x

 
  

 
. 

Thus, a a

p

e
x

 
  

 
 are the tangent vectors to the chart 

induced curve γa at the point p in M. It may be noted that the 

map    m m: , ,a C R R C R R   is called the a
th

 partial 

derivative of the function f evaluated at (x(p)),

   (

m

)
  :  ,a x p

C R RR   as 
a

px

 
 
 

. 

Our next step is to prove that ; 1,2,...,
a

p

a m
x

   
  

   

 

constitutes a generating system for TpM i.e. that 

; , 1,2,...,a a

a

p

X X X R a m
x

 
   

 
 with the Einstein‟s 

summation convention for any arbitrary 
pX T M . To prove 

this, consider a smooth curve : R M  through the given 

point p such that μ(0) = p. Let (U,x) be a smooth chart 

containing the given point p of M. Then, the action of the 

tangent vector to the curve μ at p on a smooth function f is 

given by    , ' 0pX f f     1 ' 0f x x 

       1 0'b

bf x x p x      ' 0b

b

p

f x
x


 

  
 

   ' 0b

b

p

x f
x


 

  
 

. Thus, ; 1,2,...,
a

p

a m
x

   
  

   

form a generating system for TpM with the respective 

components    ' 0bx  . We, finally establish that the 

vectors of this generating system are linearly independent. 

For this, we need to show that 

0 0 1,2,...,a a

b

p

f a m
x

 
 

     
 

 and for any 

smooth function f. Now, since (U,x) is a smooth chart, we 

have   m:x U x U R is a homeomorphism so that its 

component maps :bx U S R  are continuous (but not 

homeomorphic since they map to a space of different 

dimension). For :f U R consider the diagram (Figure 6).  

 

1

fU R

x f x

x U





 

Figure 6 

 

The map f will be smooth if  1 :f x x U R   is smooth. 

Letting bf x , we find that x
b 

will be smooth if
1bx x
is 

smooth. But the action of the map 
1bx x
 on the coordinate 

set of any point in the given chart (U,x) is 

  1 1,...,b m bx x a a a   whence 1b

bx x proj   which is 

a smooth map so that x
b
 is smooth. Hence, we can 

mathematically consistently obtain 0 a b

b

p

x
x


 

  
 

   1a b

a x x x p   a b

a  0a  . It immediately 

follows that ; 1,2,...,
a

p

a m
x

   
  

   

constitutes a vector 
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space basis of TpM. To reiterate, if a

p a

p

T M X X
x

 
   

 
, 

then the real numbers X
a 
are the components of the vector X 

of TpM in the tangent space basis 
a

px

 
 
 

 induced from the 

chart (U,x) containing p. The chart transition maps may be 

nonlinear. However, a transition of basis in the tangent space 

is accomplished through a linear transformation.  

 

5.4 Cotangent Space & Gradient Operator: The cotangent 

space at a point p on a smooth manifold M is the dual of the 

tangent space at that point i.e.  
*

*

p pT M T M where 
*

pT M is 

the cotangent space at p∈M and „*‟ denotes "dual” space.
*

pT M  is a also a vector space in its own right. For finite 

dimensional manifolds, there exists a non-canonical vector 

space isomorphism between 
pT M  and 

*

pT M . A 

non-canonical isomorphism is one that needs extra structure 

to be specified for defining the relevant isomorphic maps.  

 

Similarly, we can also construct the vector space of all (r,s) 

tensors at p∈M defined by  r

s pT M T

 * r s

p pt T M T M R   .  

 

Let  f C M  be arbitrary. Then, at every p∈M we have a 

linear map   *:p pd C M T M  , 
pf d f  defined, for 

any 
pX T M by   pd f X Xf . dp is called the gradient 

operator at p∈M and  pd f  is the gradient of the function f at 

p∈M.  pd f  is a covector and not a vector as can be seen 

from the following: Consider X to be a tangent vector to the 

level set     cN f p M f p c    i.e. 
p cX T N . Then, 

by definition, we have       ' 0 0pd f X Xf f   
 

since f is constant everywhere in Nc.  

 

We, now, explicitly identify the basis of the cotangent space 

(called the chart induced covector basis) at a point p∈M 

where M is a smooth manifold of finite dimension m.  Let 

(U,x) be a smooth chart with p∈U. Then, 

  m:x U x U R  is a homeomorphism so that its 

component maps :bx U S R  are continuous. Consider 

the gradients 
*, 1,2,...,i

p pd x i m T M  .  

 

We have 
a

p b

p

d x
x

  
     

a

b

p

x
x

 
  

 

    1a a

b bx x x p     where we have used the 

definitions of the gradient operator in the first step and the 

partial derivative operator in the next. This shows that the 

covectors 
*, 1,2,...,i

p pd x i m T M  form a basis of the 

cotangent space and that this basis is orthonormal to the 

tangent space basis.  

5.5 Push Forward and Pull Back of Maps: Let 

: M N  be a smooth map between smooth manifolds M 

and N. Then, the push forward 
*  of the map   at a point 

p∈M is the linear map  *, :p p p
T M T N


  ;  *, pX X  

defined by    *, p X f X f  where :f N R is any 

smooth function, X∈TpM and    *, p p
X f T N


  . To verify 

the consistency of the definition, we note that : M N  ,

:f N R  are both smooth, so that :  f M R   is also 

smooth i.e.  f C M   and hence, X∈TpM can act on 

f  . *, p  is also called the derivative of f at p and 

constitutes the only linear map that can be constructed with 

the given data.  

 

The tangent vector Xγ,p of a smooth curve : R M  at 

p∈M with  0 p   is pushed forward to the tangent vector 

of the smooth curve   at  p  i.e.      *, , ,p p p
X X   

   

For an arbitrary  f C N , we have  *, ,p pX f

 , pX f     ' 0f       ' 0f  

   , p
X f

  
 since      ' 0 p  

 
because  0 p  . 

 

We, now, define the pullback of a smooth mapф : M N

between smooth manifolds M and N. Then, the pullback *ф  

of the map ф at a point ф(p)∈N is the linear map 
* *ф :p pT M

 
*

ф
;

p
T N  *фp   defined by   *,ф p X   *фp X  

where ( )

*

ф pT N is any covector in N, X∈TpM and 

   *, ф
ф p p

X T N . To verify the consistency of the 

definition, we note that 
*ф p  is an element of the cotangent 

space of M at the point p∈M. It will therefore act on the 

tangent vectors at that point (X∈TpM). 

 

5.6 Immersions and Embeddings: A smooth map 
n:ф M R from a smooth manifold M is called an 

immersion of M into 
nR if the derivative of ф viz. 

 
n

*, :p p ф p
ф T M T R is injective at any p∈M whereas a 

smooth map ф: M→N (M,N smooth manifolds) is called an 

embedding if (i) ф is an immersion and (ii)  ф topM N

which also implies that  ф diffeoM N  since both M and N 

are assumed smooth.  

 

6. TRANSFORMATION GROUPS & GROUP ACTIONS 

6.1 Transformation Groups and Group Actions: A 

transformation group is an algebraic system consisting of two 

sets and two operations. The active set  ,G  is a group. The 

passive set X has no operation of its own. There is a binary 

operation: :G X X   called the “action” of the group G 

on X. Transformation groups may be (i) left transformation 
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groups or (ii) right transformation groups. By default, a 

transformation group is a left transformation group. 

 

6.2  Left Transformation Group: A (left) transformation 

group on a set X is a tuple  , , ,G X   where  ,G   is a 

group, and the map :G X X   satisfies the following: (i)

     1 2 1 2 1 2, , ,  , , , ,g g G x X g g x g g x      (ii) 

 ,  ,x X e x x   , where e is the identity of G. The map μ 

may be referred to as the (left) action map or the (left) action 

of G on X. The value  ,g x of the action of g G on 

x X  is abbreviated as gx or g.x or g·x for a left 

transformation group G acting on X. 

 

gL
denotes the function        ,  , ,;x g x g x Dom 

where μ is the left action map of a left transformation group 

 , , ,G X   , for each gG. 
gL denotes the function gL

when the left action map μ is implicit in the context. 

 

The function gL
is a well-defined function with domain and 

range equal to X for any left transformation group

 , , ,G X   , for all gG. The function g gL L may also be 

referred to as the “left action map” of the left transformation 

group. :gL X X  satisfies    ,gL x g x gx  for all 

gG and xX. 

 

Each left action map is a bijection on the point space. For any 

fixed gG, the map :gL X X must be a bijection, because 

     1 1g gg g
L L x L L x x x X     .  

 

A left transformation group  , , ,G X    is equivalent to a 

group homomorphism    : ,G Aut X    where  Aut X  

is the group of bijections of X. The map  is defined by

  : ,g x g x  . This group homomorphism is called 

a realization of the group G. 

 

6.3 Effective (Left) Transformation Group: An effective 

(left) transformation group is a left transformation group 

 , , ,G X    such that:  \ , , g G e x X gx x     . (In 

other words, 
g eL L  if and only if g e ). Such a left 

transformation group  , , ,G X   is said to act effectively on 

X.  

No two group elements produce the same action in an 

effective transformation group. If  , , ,G X    is an 

effective left transformation group and g, g
’
G are such that 

'g gL L , then g = g‟. In other words, no two different group 

elements produce the same action. That is, the group element 

is uniquely determined by its group action. Conversely, a left 

group action which is uniquely determined by the group 

element must be an effective left action. 

 

Effective transformation groups are isomorphic to subgroups 

of the autobijection group. If the point set X of an effective 

left transformation group  , , ,G X    is the empty set or a 

singleton, the only possible choice for G is the trivial group 

 e . Since the set of all left transformations of a set X must be 

a subgroup of the group of all bijections from X to X, it is 

clear that the group of an effective left transformation group 

must be isomorphic to a subgroup of this group of all 

bijections from X to X. 

 

The group operation of an effective left transformation group 

is uniquely determined by the action map. Let  , , ,G X    

be an effective left transformation group. Let g1, g2G. Then 

    1 2 1 2, , ,g g x g g x   for all xX. Suppose that there 

are two group elements g3, g4G such that 

     3 4 1 2, , ,g x g x g g x    for all xX. Then for all 

xX,  1

3 4 ,g g x    1

3 4, ,g g x      1

4 4, ,g g x  

 1

4 4 ,g g x   ,e x x  . This implies that 1

3 4g g e  or 

3 4 g g since the group action is effective. So the group 

element  1 2 1 2=,  g g g g is uniquely determined by the 

action map μ.  

 

Group elements may be identified with group actions if the 

action is effective. The above property implies that the group 

operation σ of an effective left transformation group 

 , , ,G X    does not need to be specified because all of the 

information is in the action map. An effective transformation 

group is no more than the set of left transformations 

:gL X X  of the set X. If the group action is not effective, 

then there are at least two group elements g, g‟G which 

specify the same action 
' :g gL L X X  . Any group which 

is explicitly constructed as a set of transformations of a set 

will automatically be effective. If a left transformation group 

is effective, the group elements g and the corresponding left 

translations 
gL may be used interchangeably. There is no 

danger of real ambiguity in this. 

 

One can map effective left transformation groups on X to 

subgroups of bijections on X. So all left transformation 

groups are essentially subgroups of the symmetric group on 

X. The elements of the group G may be thought of as mere 

“tags” or “labels” for bijections on X. 

 

6.4 Free Action of a (left) transformation group on a set: 

A left transformation group  , , ,G X   is said to act freely 

on the set X if    \ , , ,g G e x X g x x     . That is, the 

only group element with a fixed point is the identity e. A free 

left transformation group is a left transformation group 

 , , ,G X    which acts freely on X. 

 

In the special case that X is the empty set, the group G is 

completely arbitrary. So all left transformation groups except 
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the trivial group  e  act freely on the empty set, but are not 

effective. 

 

Let  , , ,G X   be a left transformation group. If X 

and G acts freely on X, then  , , ,G X   is an effective left 

transformation group. Let X   and assume that G acts 

freely on X. Let  Gg G e . Let xX. Then  ,  g x x  by 

definition of free action.  Therefore  \ ,g G e  , x X 

gx x . So G acts effectively on X by definition of effective 

action. Again, let  , , ,G X    be a left transformation 

group. Then G acts freely on X if and only if 

      1 2 1 2 1 2, , ,  , ,  y X g g G g y g y g g       . 

(In other words, G acts freely on X if and only if the map 

:y G X  defined by    ,g g y is injective for all 

yX). To establish this, let  , , ,G X   be a left 

transformation group which acts freely on X. Let yX and 

g1,g2G satisfy    1 2, ,g y g y  . Then,  ,y e y

  1

1 1, ,g g y    1

1 2, ,g g y   1

1 2 ,g g y   by 

definition of left transformation where e is the identity of G. 

Therefore 1

1 2g g e  .So g1=g2. Suppose that  , , ,G X  

satisfies     1 2 1 2, , , , ,y X g g G g y g y     (g1= 

g2). Let gG and yX satisfy  ,g y y  . Then 

   , ,g y e y  . So g = e. Hence G acts freely on X. 

 

6.5 Left Translation Group: The (left) transformation 

group of G acting on G by left translation, or the left 

translation group of G, is the left transformation group

 , , ,G X   . 

 

Let (G,σ) be a group. Define the action map :  G G G  

by    1 2 1 2: , ,g g g g  . Then the tuple  , , ,G G  

 , , ,G G   is an effective, free left transformation group 

of G. This is established as follows: For a left transformation 

group, the action map :G X X   must satisfy the 

associativity rule      1 2 1 2, , , ,g g x g g x    for all 

g1,g2G and xX. If the formula for μ i.e.  1 2: ,g g

 1 2,g g  is substituted into this rule with X = G, it 

follows easily from the associativity of σ. The transformation 

group acts freely because G is a group. Since the action of G 

on G is free, it is necessarily effective because G  . 

 

6.6 Transitive Left Translation Group: A transitive (left) 

transformation group is a left transformation group 

 , , ,G X   such that  , , , ,x y X g G g x y    
 
(In 

other words,   , ,  ,x X g x Xg G    ). A left 

transformation group  , , ,G X   is said to act transitively 

on X if it is a transitive left transformation group. A left 

transformation group  , , ,G X    acts transitively on a 

non-empty set X if and only if   , ,  ,x X g x Xg G   

To establish this, let  , , ,G X    be a transitive left 

transformation group. Then   , ,  ,x X g x Xg G   

.So clearly   , ,  ,x X g x Xg G     if X is non-empty. 

Now, let  , , ,G X   be a left transformation group. Let xX 

satisfy   ,,  gx Gg X   . Let yX. Then  ,yg x y 

for some gyG. So 
1( , )y xg y    because the left action map 

is a bijection. Therefore  ,g x    1, ,yg g y  

 1,ygg y  for all gG. In other words, X   

        1, , ',, , , 'yg x gg y gg G g G g Gy    

i.e.   , , gg y G X   .  

 

6.7 Orbits & Stabilizers: The orbit of a left transformation 

group  , , ,G X    passing through the point xX is the set 

 ,Gx gx g G  . A left transformation group  , , ,G X    

is transitive if and only if all of its orbits equal the whole 

point set X. One orbit equals X if and only if all orbits equal X.  

 

A left transformation group  , , ,G X   acts transitively on 

a non-empty set X if and only if X is the orbit of some element 

of X. This follows from the fact that a left transformation 

group  , , ,G X    acts transitively on a non-empty set X if 

and only if   , ,  ,x X g x Xg G    . 

 

The orbit space of a left transformation group  , , ,G X    is 

the set  ,Gx x X of orbits of  , , ,G X   passing through 

points xX. X G denotes the orbit space of a left 

transformation group  , , ,G X   . 

 

The orbit space can be shown to be a partition of the passive 

set X by noting that the relation  , ,R X X defined by

  1 2 1 2=, ,R x x X X g G x gx    is an equivalence 

relation whose equivalence classes are of the form Gx for 

xX. To elaborate, let  , , ,G X    be a left transformation 

group. Let x1,x2X be such that 1 2Gx Gx   Then

1 1 2 2=g x g x for some g1, g2G. So for any gG, 

   1 1

1 1 1 1 2 21 2=gx g g g x g g g x Gx   . Hence 1 2Gx Gx . 

Similarly 1 2 Gx Gx . So 1 2 Gx Gx  and it follows that X G  

is a partition of X. 

 

The stabilizer of a point xX for a left transformation group 

 , , ,G X    is the group  ,x xG   with 

  =xG g G gx x  and 
x xG Gx   . 
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A left transformation group  , , ,G X    acts freely on X if 

and only if  xG e for all xX i.e. the group acts freely if 

and only if every stabilizer is a singleton, whereas the group 

acts transitively if and only if the orbit space is a singleton.  

 

6.8 Left Transformation Group Homomorphisms: A (left) 

transformation group homomorphism from a left 

transformation group  1 1 1 1, , ,G X   to a left transformation 

group   2 2 2 2, , ,G X   is a pair of maps  ,  with 

1 2: G G  and 
1 2: X X   such that (i)   1 ,  g h 

    2 ,g h   for all g,hG1i.e.          gh g h  

for g,hG1.(ii)        1 2, ,g gx x    for all gG1, 

xX1i.e.       gx g x  for gG1,xX1. A (left) 

transformation group monomorphism from  1 1,G X to 

 2 2,G X is a left transformation group homomorphism is a 

pair of maps  ,   such that
1 2: G G  and 

1 2: X X 

are injective. A (left) transformation group epimorphism 

from  1 1,G X to  2 2,G X  is a surjective left transformation 

group homomorphism  ,  such that 
1 2: G G   and 

1 2: X X   are surjective. A (left) transformation group 

isomorphism from  1 1,G X to  2 2,G X is a left 

transformation group homomorphism  ,   such that 

1 2: G G  and 
1 2: X X   are bijections. A (left) 

transformation group endomorphism of a left transformation 

group  ,G X is a left transformation group homomorphism 

 ,   from  ,G X  to  ,G X .A (left) transformation 

group automorphism of a left transformation group  ,G X  

is a left transformation group isomorphism  ,  )from

 ,G X  
 
to  ,G X . 

 

An equivariant map is a special case of a transformation 

group homomorphism. An equivariant map between left 

transformation groups  1 1, , ,G X    and  2 2, , ,G X    is a 

map 1 2: X X  which satisfies 1  , ,g G x X   

     1 2 ,,g x g x     i.e    gx g x   for gG, 

xX1. 

 

6.9 Right Transformation Groups: A right transformation 

group on a set X is a tuple  , , ,G X    where  ,G 
 
is a 

group, and the map : X G X    satisfies (i) 

  1 2 1 2, , ,  , ,g g G x X x g g      1 2 , ,x g g  (ii) 

 ,  ,  x X x e x    where e is the identity of G. The map μ 

may be referred to as the (right) action map or the (right) 

action of G on X. 

 

For a right transformation group  ,x g is generally denoted 

as xg or x.g for gG and xX. The associative condition (i) 

ensures that this does not result in ambiguity since 

   1 2 1 2x g g xg g for all g1,g2G and xX. gR
 denotes the 

function        , ,  , ,x x g x g Dom  , where μ is the 

right action map of a right transformation group  , , ,G X     

for each gG.
gR denotes the function gR

 when the right 

action map μ is implicit in the context. 

 

The function gR
 is a well-defined function with domain and 

range equal to X for any right transformation group 

 , , ,G X   , for all gG. The function g gR R  may also 

be referred to as the “right action map” of the right 

transformation group. The right action map :gR X X  

satisfies    ,gR x x g xg  for all gG and xX. 

 

The right action map :gR X X is a bijection for each gG 

because      1

1

g g gg
R R x R R x x

  for all xX. 

 

Effective right transformation groups, free right 

transformation groups, right translation groups, transitive 

right transformation groups, orbits and stabilizers of right 

transformation groups and right transformation group 

homomorphisms are defined in analogous manner to 

equivalent concepts for left transformation groups.   

 

7. LIE GROUPS & LIE ALGEBRAS 

7.1 Lie Groups: A Lie group (G,●) is (a) a group G with 

group operation ● (b) a smooth manifold G i.e. the group 

manifold G is endowed with a compatible topology and a 

smooth maximal atlas (c) the manifold G×G is also a smooth 

manifold inheriting a smooth atlas from G together with the 

product topology and there exists (i) a smooth map 

:G G G    defined by  1 2 1 2,g g g g and (ii) a 

smooth map :i G G defined by 1g g for all 

1 2, ,g g g G . 

 

7.2 Left Translation: Let (G,●) be a Lie group. Then, for 

any g∈G, there is a map :gl G G defined by 

 gh l h g h   for all h∈G called the left translation with 

respect to g∈G. Each 
gl is an isomorphism for, we have, 

   ‟g gl h l h ‟gg h h   1 1 ‟g g h g g h     

‟h h   where the existence of g
-1

 for every g∈G is 

guaranteed because G is a group. Hence, 
gl  is an injective 

map. Now, let h∈G be arbitrary. Then, 
1( )gl g h  

1  g g h h   whence, for every image point h∈G, there 

exists a point 1g h  in the domain G of the map 
gl , thereby 

establishing surjectivity. 
gl being bijective and smooth  

constitutes a diffeomorphism.  
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7.3 Lie Algebras: A Lie algebra  , , , .,.L  is a k-vector 

space  , ,L  over the field F equipped with a Lie bracket 

that satisfies (i) bilinearity i.e. .,. : L L L   (ii) 

anti-symmetry , ,x y y x   (iii) Jacobi identity: 

, , , , , , 0x y z y z x z x y   .  

 

8. DIFFERENTIABLE BUNDLES  

8.1 Differentiable Bundles: A (differentiable) fibre bundle 

 , , , ,E M F G
 
consists of the following elements: (i) A 

differentiable manifold E called the total space (ii) A 

differentiable manifold M called the base space (iii) A 

differentiable manifold F called the  fibre (or typical fibre) 

(iv) A surjection map : E M  called the projection map. 

The inverse image  1 : pp F F   is called the fibre at point 

p∈M (v) A Lie group G called the structure group, which acts 

on F on the left (vi) A set of open covering  jU of M with a 

diffeomorphism  1:i i iU F U    such that  ,i p f 

p . The map 
i is called the local trivialization since 1

i
  

maps  1

iU 
  onto the direct product 

iU F (vii) If we 

write    ,,i i pp f f  , the map 
,  :i p pF F  is a diffeo 

-morphism. On 
i jU U  , we require that  ijt p 

1

, , :i p j p F F   be an element of G. Then ,i j  are related 

by  smooth map : iij jU Gt U   ,j p f    ,i ijp t p f  

The maps 
ijt are called the transition functions. 

 

Strictly speaking, the definition of a fibre bundle should be 

independent of the special covering  jU of M. In the 

mathematical literature, this definition is employed to define 

a coordinate bundle     , , , , , ,i iE M F G U  .  

 

Two coordinate bundles     , , , , , ,i iE M F G U   and 

    , , , , , ,i iVE M F G  are said to be equivalent if 

        , , , , , ,i j i jE M F G U V    is again a co- 

ordinate bundle. A fibre bundle is defined as an equivalence 

class of coordinate bundles.  

 

In practical applications in physics, however, we always 

employ a certain definite covering and make no distinction 

between a coordinate bundle and a fibre bundle. 

 

Let us take a chart Ui of the base space M.  1

iU 
is a direct 

product diffeomorphic to iU F ,  1 1: i i iU U F    

being the diffeomorphism. If
i jU U  , we have two 

maps i  and
j on 

i jU U . Let us take a point u such that  

  i ju p U U    . We then assign two elements of F, one 

by 1

i
  and the other by 

1

j


i.e.    1 ,i iu p f  and 

   1 ,j ju p f  . There exists a map : iij jU Gt U  which 

relates fi and  fj  as  i ij jf t p f . This is also written as 

    , ,j i ijp f p t p f   (Refer figure 7).  

 

We require that the transition functions satisfy the following 

consistency conditions: (i) 
ip U  ii Ft p id for (ii) 

   
1

ij jit p t p


 for 
i jp U U  (iii)      ij jk ikt p t p t p

for 
i j kp U U U   . Unless these conditions are satisfied, 

local pieces of a fibre bundle cannot be glued together 

consistently. If all the transition functions can be taken to be 

identity maps, the fibre bundle is called a trivial bundle. A 

trivial bundle is a direct product M×F.  

 

                           F                              F 

  1

, ,ij i p j pt p    

                tij(p)fj                                                              fj 

 

     1

,i p            u        1

,j p   

                       π        

 
                          p 

 
                       Ui ∩ Uj 

    Figure 7 

 

Given a fibre bundle E M , the possible set of 

transition functions is not unique. Let  iU be a covering of 

M and 
i and 

i  be two sets of local trivializations giving 

rise to the same fibre bundle. The transition functions of the 

local trivializations are   1

, ,ij i p j pt p    and  ijt p 

1

, ,i p j p 
. Define a map   :g p F F  at each point pM 

by   1

, ,i i p i pg p   .We require that gi(p) be a 

homeomorphism which belongs to G. This requirement must 

certainly be fulfilled if  i and  i describe the same fibre 

bundle. It is easily seen from   1

, ,ij i p j pt p   ,  ijt p 

1

, ,i p j p 
and the definition   1

, ,i i p i pg p    that   ijt p 

     
1

i ij jg p t p g p


. 

 

In practical applications in physics, tij are the gauge 

transformations required for pasting local charts together, 

while gi corresponds to the gauge degrees of freedom within a 

chart Ui. If the bundle is trivial, we may put all the transition 

functions to be identity. Then the most general form of the 

transition functions is       
1

ij i jt p g p g p


 . 

 

8.2 Sections & Local Sections: Let E M be a fibre 

bundle. A section (or a cross section) : M E  is a smooth 

map which satisfies Mid   . Thus,   |pp  is an 

element of  1

pF p  . The set of sections on M is denoted 

by Γ(M). If U M , we can define a local section which is 
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defined only on U. Γ(U) denotes the set of local sections on 

U.   

 

8.3  Reconstruction of fibre bundles: For given M,  iU , 

tij(p), F and G, we can reconstruct the fibre bundle 

, , , ),(E M F G . This amounts to finding a unique , , iE 

from given data. For this purpose, we define, 
i

i

X U F 

and introduce an equivalence relation ~ between 

 , ip f U F  and  , ‟ jq f U F  by    , ~ , ‟p f q f if 

and only if p = q and  ‟ ijf t p f . A fibre bundle E is then 

defined as X . We denote an element of E by  ,p f   . 

The projection is given by  :  ,p f p    .The local 

trivialization  1:i j iU F U    is given by  :  ,i p f  

  ,p f   . , , iE   thus defined satisfy all the axioms of 

fibre bundles. Thus, the given data reconstructs a fibre bundle 

E uniquely.  

 

This procedure may be employed to construct a new fibre 

bundle from an old one. Let  , , , ,E M F G be a fibre bundle. 

Associated with this bundle is a new bundle whose base 

space is M, transition function tij(p), structure group G and 

fibre F‟ on which G acts.  

 

8.4 Bundle Maps: Let E M and '' 'E M be 

fibre bundles. A smooth map : 'u E E is called a bundle 

map if it maps each fibre 'pF of E‟ onto 
qF of E. Then u 

naturally induces a smooth map : 'f M M such that 

 f p q i.e. that the Figure 8 commutes i.e. 'u f  . 

'

'

'

u

f

E E

M M

 



 



 

( )

'

u

f

w u w

p q

 

 
 

  
 

 

 

Figure 8 

 

A smooth map : 'u E E  is not necessarily a bundle map. It 

may map , 'px y F of 'E  to  u x and  u y on different 

fibres of E so that      u x u y  in which case it is not 

a bundle map.  

 

8.5 Equivalent bundles: Two bundles E M  and

'' 'E M are equivalent if there exists a bundle map 

: 'u E E such that :f M M is the identity map and u is 

a diffeomorphism. 

 

8.6 Pullback bundles: Let E M be a fibre bundle 

with typical fibre F. If a map :f N M is given, the pair 

 ,E f defines a new fibre bundle over N with the same fibre 

F as shown in the Figure 9. Let *f E be a subspace of N E

which consists of points  ,p w  such that    f p w .

      *  ,f E p w N E f p w    is called the pullback 

of E by f. The fibre Fp of *f E is just a copy of the fibre  f p
F

of E. If we define 1*f E N


 by  1 : ,p w p and 

2*f E E


 by  ,p w w , the pullback *f E  may be 

endowed with the structure of a fibre bundle and we obtain 

the following bundle map: 

2*

1

f

f E E

N M



 



 



 

 

2

1

,

f

p w w

p f p



 

 
 

  
 
 
 

 

Figure 9 

 

The commutativity of Figure 9 follows since 

         2 1,  w ,  wwp f p f p       for  ,p w 

*f E . In particular, if N M  and 
Mf id , then two fibre 

bundles *f E and E are equivalent. 

 

Let  iU  be a covering of M and  i be local trivializations. 

  1

if U defines a covering of N such that *f E  is locally 

trivial. Take wE such that     iw f p U   for some

p N If     1 ,i iw f p f  we find    1 , ,i ip w p f  

where 
i is the local trivialization of  *f E . The transition 

function tij at   i jf p U U   maps fj to     i ij jf t f p f . 

The corresponding transition function 
*

ijt of *f E  at 

   1 1

i jp f U f U   also maps fj to fi.  The shows that 

    *

ij ijt p t f p .  

 

9. TANGENT BUNDLES  

Let M be a smooth manifold of finite dimension m. Then the 

tangent bundle to M is the set p
p M

TM T M




  for all p M

i.e. the disjoint union of all the sets of all the tangent vectors 

at all the points of M with the bundle projection map 

:TM M  defined by 
p pT M X p M  for all 

Xp∈TpM. The set bundle so obtained can be converted to a 

smooth manifold bundle by constructing a smooth atlas on 

TM from a given smooth atlas on M as follows: Let AM be a 

smooth atlas on M and let (U,x)∈AM. From (U,x), we 

construct the chart   ,preim U  . The set  preim U is, 

obviously, open in TM with the initial topology. We define 

the map      2m: preim U preim U R    as 

      1 1,..., , ,...,m mX x X x X X X   for some X∈ 

TM, i.e. X is an element of some tangent space, say TpM. We 

note that since  X U M    (π being the projection map, 

always maps X to an element of the base space M), the 

position of π(X) in the base space M can be specified using 

the original chart (U,x) and is given by the set of m 
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coordinates       1 ,..., mx X x X  . We still need to 

specify the location of X in the fibre. For this purpose, 

consider the basis of the tangent space (fibre) at the base point 

π(X) i.e.  X
T M


 since X lies in this particular tangent space 

(fibre) over its own base point. This basis, in terms of the 

original chart is given by
 

; 1,2,...,
j

X

j m
x 

   
  

   

. Since, 

this constitutes a basis of the tangent (fibre) space, we can 

expand X„s location in the fibre in terms of this basis as 

 

; 1,2,...,j

j

X

X X j m
x 

 
  

 
 in the tangent (fibre) space 

at π(X). It follows, then, that the set of 2m coordinates 

   , ; , 1,2,...,i jx X X i j m   specify completely an 

element X of TM.  

 

10. VECTOR FIELDS 

10.1 Vector Fields: A vector field is simply a vector quantity 

that is a function of space-time. The difference between a 

vector and a vector field is that the former is one single vector 

while the latter is a distribution of vectors in space-time. The 

vector field exists in all points of space and at any moment of 

time. Therefore, while it suffices to expand any vector in a 

basis with real coefficients (because a single vector will have 

a set of constant coefficients in any given basis), it becomes 

necessary to use coefficients that are functions of space-time 

for the representation of vector fields or, in the alternative, 

use a space-time dependent basis. In case, we adopt the 

former approach, the components of vector fields in a given 

basis may be elements of  C M
. We, therefore, briefly 

touch upon the algebraic structure of  C M
.  

 

 C M
 as a vector space: We can endow  C M

with 

pointwise addition (+) and scalar multiplication (.) over R

such that   , ,.C M  becomes a vector space over R . The 

operations (+) and (.) are defined in the usual manner as:

     : C M C M C M     ,      ,f g p f g p  

       , ,f p g p f g C M p M     &  . : R C M

 C M with         , .f p f p f p f    

  , ,C M R p M   . 

 

 C M
as a ring: We can endow  C M

 with pointwise 

addition (+) and multiplication (●) such that   , ,C M  

becomes a ring (not a division ring).  The operations (+) and 

(●) are defined  as:      : C M C M C M     ,  ,f g

            , ,p f g p f p g p f g C M    

p M and      : C M C M C M     ,   ,f g p

  f g p      .f p g p  , ,f g C M p M   . 

 

Consider, now, a smooth manifold M having the tangent 

bundle TM M  (π smooth). We define the vector field 

at a point pM as the smooth section   pp T M  . Thus, the 

map : M TM  satisfies
Mid   . Let Γ be the set of all 

smooth vector fields on a smooth manifold M i.e. 

      : MTM M TM p id p p M        . Then 

the set Γ(TM) can be endowed with a module structure over 

the ring  C M
by defining the pointwise operations 

 , in Γ(TM) as follows:    : TM TM   

 TM  ,    as       p p p     

 , , , pTM p M T M      and    :C M TM  

 TM ,    ,f f  as       .f p f p p 

f     , , ,. pC M TM p M T M    . It can easily be 

verified that Γ(TM) is a module over the ring  C M
 under 

the aforesaid  , operations. Furthermore, if the 

operation      : C M TM TM    is replaced by 

   :F F TM TM  , where F is any field e.g. the set 

of real numbers R  or complex numbers , then Γ(TM) 

becomes a vector space over F.  

 

It needs to be emphasized here that unlike a vector space, a 

module  , ,N  over a ring R does not generically possess 

a basis, unless the ring R is a division ring. In fact, since a 

field is a division ring and a module over a field is a vector 

space, it follows that every vector space has a basis. 

However, there may exist modules over non-division rings 

that do have a basis. The important point is that such modules 

are not guaranteed to have a basis, although some such 

modules may possess a basis. Since Γ(TM) is a module over 

the ring  C M
 (which is not a division ring), it is not 

guaranteed that Γ(TM) will have a basis. Modules over a ring 

that possess a basis are called free modules while modules 

over rings that are direct summands of a free module over a 

ring are called projective. Thus, if a free module N over a ring 

R can be written as the direct sum P⊕Q where Q is another R 

module, then P is a projective R module. “Free” implies 

“projective” in the context of modules. Serre-Swan theorem 

explicitly establishes that the set of all smooth sections Γ(E) 

over a vector bundle E M  (where M is a smooth 

manifold) is a finitely generated projective  C M
 module 

i.e. Γ(E)⊕Q=F where Q is a  C M
 module and F is a free 

module. In a sense, Q quantifies the extent by which Γ(E) 

fails to have a basis. 

 

It can also be shown that if P and Q are (finitely generated 

and/or projective) modules over commutative ring R then set 

 ,RHom P Q   : is linear, , pointwiseP Q    is 

again a (finitely generated and/or projective) module. In 

particular, we also have
 C M

Hom   
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        * *,TM C M TM T M     . This enables us to 

define a tensor field t on a smooth manifold M as a  C M

multilinear map 

         * *: ... ...

s copiesr copies

t T M T M TM TM C M        

It is pertinent to recall that the pullback (defined for a 

covector at a point) can be extended to a covector field 

without additional conditions. However, the pushforward of a 

vector cannot be extended to the pushforward of a vector 

field unless the underlying smooth map is a diffeomorphism. 

To understand why this is so, we consider two smooth 

manifolds M and N and let :h M N be a smooth map. 

Thus, each point of M is mapped to a unique point in N albeit 

two or more points of M may be mapped to the same point of 

N if h is not injective. Further, if h is not surjective, then there 

would be points in N that would not be the image of any point 

of M i.e.  h M N . Consider, now, a covector field defined 

over N. Then, every point of N would have a covector 

attached to it. The pullback of this covector field in M 

presents no problem because every point of M is associated 

with a point in N and hence, we can define a covector at every 

point of M i.e. a covector field over M by pulling back to 

every point in M, the covector in N to which that particular 

point in M maps under h.  However, if we try to pushforward 

a vector field over M to N, we face problems on two counts. If 

h is not surjective, there would be points in N other than the 

image set h(M) on which vectors from M do not map under h. 

Hence, no field could be defined at these points by mapping 

of a vector field from M under h. At best, we could restrict the 

pushforward to the image set h(M) only. If the map h is not 

injective there could be two or more vectors of M mapping to 

the same point of N under h. In such a case, the vector field at 

the same image point of two or more vectors of M would not 

be well defined. Thus, in order that the pushforward of a 

vector field may exist, the underlying map must necessarily 

be bijective i.e. a diffeomorphism.  

 

Now, since the left translation map :gl G G is a 

diffeomorphism, it can be used to pushforward any vector 

field X on G to another vector field defined by 

   * *,
,g g h h hg h G

l X l X X T G


  .  

 

10.2 Left Invariant Vector Fields: Let G be a Lie group and 

X a vector field on G. Then, X is called a left invariant vector 

field if for any g∈G, 
*gl X X . This condition can also be 

expressed as   * , ,g h ghl X X g h G   . The LHS gives, on 

action on an arbitrary  f C M (using the definition of 

pushforward)        *g h h g gl X f X f l X f l h  
 

 and 

the RHS yields       gh gX f Xf gh Xf l h      whence 

we can write the left invariant condition as 

      ,g gX f l Xf l f C M g G    . We denote the 

set of all left invariant vector fields on a Lie group G by 

 L G . Obviously, then    L G TG  . We inherit  L G  

with the restrictions of the operations.  , of Γ(TG) i.e. 

     : L G L G L G    and  : C G
    L G L G  . 

It can easily be verified that  L G is a module over the ring 

 C G
under the aforesaid  , operations. Like Γ(TG), if 

the scalar multiplication      : C G L G L G   is 

replaced by  :F F TG   TG , where F is any field,  

then  L G is  a vector space over F.  

 

The Lie algebra   , .,.L G  is a sub-algebra of 

  , .,.TG  where  TG  is the space of all sections 

(vector fields) on the tangent bundle to the group G.  By 

definition, we have    L G TG  .  Further, the operations 

, are inherited from  TG . Hence, we only need to 

show that      .,. : L G L G L G  . For this, we 

consider for  ,X Y L G ,  , glX Y f   gX Y f l

        g g gY f l X Yf l Y X lX f      gXY f l

  – gYX f l  , gX Y f l i.e. ,X Y is a left invariant 

vector field in G, thereby confirming the subalgebraic 

structure of  L G . 

 

This Lie algebra  L G  of the Lie group G is isomorphic as a 

vector space to the tangent space of G at the identity element 

i.e.   vector space eL G T G . To establish this, we consider the 

linear map  : ,ej T G L G  A j A  defined by 

 
g

j A
*gl A g G   . Then, (i)  j A  is left invariant i.e. 

   j A L G for     * * *h h gg
l j A f l l A f  * *h gl l A f

         * *g h h g hg hg
l A f l A f l l A f l l f f C G        

(ii)   : ej T G L G  is R linear (iii)  : ej T G L G  

is injective for let    j A j B for all g∈G

   
g g

j A j B  for all g∈G    
e e

j A j B   *el A

 *el B A B  (iv)  : ej T G L G  is also surjective 

for let  X L G . We can show that there exists 

X

e eA X T G   such that  Xj A X  for  X

g
j A *

X

gl A

 *g el X
ge gX X     Xj A X L G   (v) Finally, 

we identify the billinear map  .,. : e e eT G T G T G  in such a 

way that       , .,. , .,.e Lie algebraT G L G . This is done by 

setting  .,. : e e eT G T G T G   as       , ,j A B j A j B . 

The Lie algebra isomorphism between TeG and L(G) then 

takes the form  : eT G L G  defined by 

       1, ,eT G A B j j A j B L G  . 
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11. VECTOR BUNDLES & FRAMES 

11.1 Vector Bundles: A vector bundle E M  is a fibre 

bundle whose fibre is a vector space. Let F be 
kR vector 

space and M be an m-dimensional manifold. It is common to 

call k the fibre dimension and denote it by dim E, although the 

total space E is  m k dimensional. The transition functions 

belong to  ,GL k R , since it maps a vector space onto 

another vector space of the same dimension isomorphically. 

If F is a complex vector space 
k

, the structure group is 

 ,GL k . 

 

A vector bundle whose fibre is one-dimensional (F = R or

) is called a line bundle. A cylinder 
1S R is a trivial R -line 

bundle. A Mobius strip is also a real line bundle. The 

structure group is      1, 0RGL R  or      1, 0GL    

which is abelian. 

 

11.2  Frames: On a tangent bundle TM, each fibre has a 

natural basis  / x  given by the coordinate system x
 on 

a chart 
iU . We may also employ the orthonormal basis  ê

if M is endowed with a metric. / x  or ê is a vector field 

on 
iU  and the set  / x  or  ê  forms  linearly 

independent vector fields over 
iU . It is always possible to 

choose m linearly independent tangent vectors over 
iU  but it 

is not necessarily the case throughout M. By definition, the 

components of the basis vectors are / x  

 0, ..., 0, 1, 0, ..., 0


 or  ˆ 0, ..., 0, 1, 0, ..., 0e


 . These 

vectors define a (local) frame over 
iU . 

 

Let E M be a vector bundle whose fibre is
kR  (or

k

). On a chart iU , the piece  1

iU 
is trivial,  1

iU  

k iU R , and we may choose k linearly independent sections 

    1 ,..., ke p e p  over iU . These sections are said to define 

a frame over iU . Given a frame over iU , we have a natural 

map  k korp RF F  given by  V V e p



 V F  . The local trivialization is 

     1 ,i V p V p   By definition, we have 

    , 0, ...,0, 1, 0, ..., 0i p e p


  . 

 

Let  i jU U  and consider the change of frames. We have 

a frame     1 ,..., ke p e p on iU and     1 ,..., ke p e p on 

jU  where 
i jp U U  . A vector  e p  is expressed as  

     e p e p G p


  
 where    ,G p GL k R




  or 

 ,GL k . Any vector  1V p  is expressed as V   

   V e p V e p 

   whence we obtain the change of frames 

rule  1V G p V
 



  where    1G p G p
 

 

 

   1G p G p
  

 
  . Thus, we find that the transition 

function  ijt p is given by a matrix  1G p
. 

 

12. PRINCIPAL BUNDLES  

Principal fibre bundles are immensely important in physics, 

since they constitute the contemporary apparatus for 

explaining general relativistic transformations as well as the 

Yang Mills theory in the standard model of particle physics. 

Very roughly speaking, principal fibre bundles are bundles 

whose fibres are Lie groups. They are immensely important 

objects since they enable us to understand any fibre bundle 

with a fibre on which a Lie algebra acts.   

 

12.1 Lie Group Action on a Manifold: Let  ,G  be a Lie 

group and let M be a smooth manifold. Since, G is also 

smooth, G M is a smooth manifold and we can define a 

smooth map :G M M  satisfying (i) e G e p   

,p p M    and (ii)    2 1 2 1g g p g g p  ,
1 1,g g

andG p M  . The map :G M M   is called the left 

G-action on M.  

 

Similarly, we can define a right G-action on M as a smooth 

map : M G M  satisfying (i) ,e G p e p p    M   

and (ii)    1 2 1 2p g g p g g  ,
1 1,g g G  and 

p M . 

 

A correspondence between the left G-action and the right 

G-action can be defined as 1p g g p g G  and 

p M  for (i) given  as a smooth map,  would also be 

smooth since the map 1g g  is smooth (ii) If e G 

,p e p p M    then it follows that p e p 

,e p p M  i.e. ,e G e p p p M      and (iii) We 

have,  1 2p g g  1

1 2g p g  1 1

2 1g g p 

     
11 1

2 1 1 2 1 2g g p g g p p g g
      

1 1,g g 

G and p M  thereby establishing the correspondence.  

 

12.2 Equivariant Maps: Let  ,G  ,  ,H   be two Lie 

groups with : G H   being a (smooth) Lie group 

homomorphism i.e.      1 2 1 2 1 2,g g g g g g G     

and let M and N be  smooth manifolds. Let :G M M   

and ' : H N N   be left G-action and left H-action 

defined on M and N respectively and let :f M N  be a 

smooth map. Then :f M N is called    equivariant if

     ' ,f g m g f m g G m M     i.e. if the Figure 

10 commutes 
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 



 

Figure 10 

 

12.3 Orbit & Stabilizer: Define :G M M  as the left 

G-action of a Lie group G on a smooth manifold M. (a) For 

any p M  we define its orbit under the left G-action 

:G M M   as the set  ;p q M g G g p q    O

M i.e. the orbit of a point on a manifold is the set of all 

points that can be transformed to the given point by virtue of 

the given left action map. (b) Let us define a relation by

;p q g G q g p    . It is easily seen that  is an 

equivalence relation so that we can constitute the set of 

equivalence classes as the quotient space M M G  

which is called the orbit space of M under G. (c) Given 

p M , we define its stabilizer as the set
pS   

 g G g p p G    i.e. the stabilizer of a point on a 

manifold is the set of all group elements of G that leave the 

given point on the manifold invariant. (d) A left G-action

:G M M   is called free if  pS e G  , p M  . If 

:G M M  is a free left G-action, then 
p diffeomorphic GO  

for every p M . (e) The concepts of “orbit” and “stabilizer” 

can be defined in the context of a right G-action on a smooth 

manifold M similarly. 

 

12.4 Principal G-Bundle: A smooth bundle E M is 

called a principal G-bundle if (i) E is a right G-space i.e. E is 

equipped with a right G-action : E G E   (ii) this right 

action : E G E   is free so that every orbit of is 

isomorphic to G (iii) the bundles E M  and 

E E G are isomorphic as bundles (where E G E  

is the orbit space of E under G and : E E   defined by 

 E E   is the usual projection map from each 

element of E to its equivalence class under the right G action

). Since the right action is free   1

diffeomorphism G    so 

that each fibre of E E G and hence, of E M  is 

diffeomorphic to the given Lie group.  

 

An important example of principal bundle is the so-called 

frame bundle. Let M be a smooth manifold of dimension m. 

We define a frame at a point x M  as xL M   

   1 1{ ,..., such that ,...,m m xx
e e e e constitute a basis of the 

tangent bundle xT M }.i.e. it is the set of all basis sets to xT M  

at a point x M . A frame bundle is, then, the disjoint union 

x
x M

LM L M




 . We equip LM with a smooth atlas inherited 

from M. The projection map LM M  is defined by 

 1,..., m x
LM e e x M   since there always exists a 

unique point x on the manifold M ( x M ) such that 

 1,..., m xx
e e L M  in LM at x M . In other words, 

 1,..., m xx
e e L M  can be projected onto the base manifold 

M by the map π since there exists a unique x M

corresponding to every  1,..., m xx
e e L M LM  . With this 

projection map, LM M  is a bundle. We establish a 

right     , , , 1,2,..., ,det 0m

nGL m R g R m n m g    act- 

ion on LM by the following:  1,..., me e

       1 1

1 1 1 1, , ,..., ,..., , ,..., .m m

m m m mg GL m R g e g e g e g e 

It can easily be seen to be a free action because there does not 

exist any element  ,g GL m R  other than the group 

identity element that would leave the any given basis set 

invariant. We, finally, show that LM M  is a principal 

 ,GL m R  bundle. For this purpose, we need to prove that 

LM M  is isomorphic (as a bundle) to the bundle 

 ,LM LM GL m R  where  ,LM GL m R  is the orbit 

space of the right  ,GL m R -action  in LM. Let p M  be 

arbitrary. Then the frame at p is the element
pL M LM . 

Thus, the orbit of 
pL M  under the right  ,GL m R  action is 

the set of all frames 'pL M LM  at the same point p M

that can be obtained from 
pL M  by the action of an element 

of  ,GL m R . However, since the action is free, 
pL M is 

invariant only under the action of identity e of  ,GL m R . 

The action of every other  ,g GL m R  will produce a 

distinct and different basis set but localized at the same 

p M .But this new basis set will also be an element of 

pL M LM  because this new basis set is also localized at p 

and 
pL M LM is the set of all the basis sets at p.  Therefore, 

the equivalence class (orbit) of 
pL M  under the right 

 ,GL m R  action coincides with itself since
pL M  is the set 

of all basis sets at p M  and the given right action produces 

another basis set at p M  i.e. another element of 
pL M .  

Furthermore, all the basis sets at p M i.e. all the elements 

of 
pL M  can be created from each other by the right action of 

the group  ,GL m R .  Similar equivalence classes would 

exist corresponding to every other point of M. It follows that 

when the quotient set  ,LM GL m R  is constructed by 

removing all the frames (created by the action of  ,GL m R  

other than the identity element) at each point of M, we 

recover simply the manifold M, thereby establishing the 

isomorphism.  

 

12.5 Principal Bundle Map: The pair of smooth maps 

 ,u f  with : 'u P P and : 'f M M  between two 

smooth principal bundles  , , , ,P M G  and 

 ', ', ', ', 'P M G  constitute a principal bundle map if (i) 

there exists a Lie group homomorphism    : , ', 'G G   
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defined by      1 2 1 2 1 2' ,g g g g g g G       (ii)

'f u    and (iii)      'u p g u p g ,p P 

g G  i.e. that the Figure 11 commutes.  

' ' '' ' '

G

G

P P M

u u f

P P M





 

  

 

 

Figure 11 

 

In Figure 11, if : 'f M M  is the identity map i.e. M = M’ 

and further, G=G’, then the map : 'u P P  is a 

diffeomorphism. (i) The injectivity of : 'u P P is proved 

as follows: Since : 'f M M is the identity map and G = G‟ 

we have ' u   and      'u p g u p g ,p P 

g G . Let    1 2u p u p  for any 
1 2,p p P  . Then, 

 1p   1' u p   2' u p  2p  so that 
1 2,p p  

lie in the same fibre. Thus, there exists a unique g G   such 

that 
1 2p p g  since the action of G is free, as the given 

bundle is a principal bundle. Thus,  1u p  2u p g

 2 'u p g  1 'u p g . Since the action is free g G  

must be the identity element of G whence 1 2 2p p g p  . 

(ii) Let ' 'p P  be arbitrary. We need to look for some 

p P  such that   'u p p  . We choose some point p P  

in the fibre (under the projection map π) at the base point 

corresponding to the point ' 'p P under the projection π‟ i.e. 

we choose   1 ' 'p p  so that    ' 'p p  . This is 

possible because both π,π‟ map into the same manifold M. 

Then we have,       ' ' 'u p p p     so that  u p  

and 'p  belong to the same fibre. Since the action is free, 

there exists a unique g G such that   'u p g 'p

  'u p g p    'u p p  . Thus, there exists p P  

such that   'u p p  .  

 

12.6 Trivial Principal Bundles: A principal G- bundle 
GP P M   is called trivial if it is diffeomorphic 

as a principal G-bundle to the principal G-bundle 

1'GM G M G M


     with the G action 

   ' : M G G M G     defined by  , ' 'x g g 

 , ' , , 'x g g x M g g G    and the projection map 

1 : ,M G M    1 , ,x g x x M g G     or equivalent- 

ly, if there exists principal bundle map :u P M G  in 

Figure 12. 

1 ''

G

G

P P M

u u id

M G M G M





 

  

   

 

Figure 12 

 

We, now, establish the criterion for the triviality of a 

principal G-bundle and prove that a principal G-bundle is 

trivial if and only if there exists a smooth section : M P   

i.e. a smooth map : M P   that satisfies 
Mid    . (i) 

Let us assume that the given principal bundle 
GP P M   is trivial so that there exists a principal 

bundle map :u P M G  . Then, we can construct a section 

: M P   at any x M  by the following prescription: 

   1 , Gx u x id  . The : M P   so defined is a section 

for      1 , Gx u x id x     . (ii) Let : M P   be 

given such that 
Mid    so that   x x x M     . 

Consider an arbitrary p P . Then  p  is the projection 

of p to a point say, pm on the base manifold M. Thus,  

    mp p    maps to a point in the fibre  1

mp 
 at 

the point pm of the base manifold M. Since, all points of the 

same fibre are mapped to the same base point and since points 

in a fibre can be mapped to each other through the group G 

action, there exists a unique (unique, because the action of G 

is free)  p G   such that     p p p    . Since 

p P  is arbitrary, the above equation holds for any other 

point  q p g G  of the same fibre so that we have, 

    p g p g p g g G      . But since π 

projects all points of a fibre to the same base point, we have 

   p g p   so that the LHS gives   p 

 p g p g g G    . Returning to the equation 

    p p p     and taking the right action by an 

arbitrary element of G on both sides, we get  

           p p g p p g p g        

Since the right action is free, we obtain 

   p g p g    .  Let us, now, define the map 

:u P M G    defined by       ,u p p p   . This 

is, obviously, a bundle map for 

    1 ,p p    p p P   . We, finally, establish 

that this is a principal bundle map. We have  u p g

  'u p g . Also  u p g      ,p g p g 

    ,p p g       , 'p p g    'u p g , 

thereby confirming our assertion. Hence, the existence of a 

smooth section implies triviality of the principal G-bundle.  

 

13. ASSOCIATED BUNDLES  

13.1 Associated Bundles: Given a principal G-bundle
GP P M   and a smooth manifold F with a left 

G-action defined by :G F F  by the same group G that 

acts on the principal G-bundle, we can define an associated 

bundle F

FP M


  where the projection map πF and its 

domain PF are as follows: (a) Set the relation G  on P F  

  1 u p 
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by  ,P F p f   ', 'G p f P F  g G   such that

'p p g , 1'f g f . That 
G

 is an equivalence 

relation is easily verified. We define PF as the quotient space 

 F GP P F  . In other words, the elements of PF are the 

representative elements of the equivalence classes 

 , , ,p f p P f F     where p, f  are the representative 

elements from their orbits under the respective right G-action 

and left G-action.  (b) The projection map :F FP M  is 

defined by    ,FP p f p M  . (c) to establish that 

:F FP M   is well defined, we consider an arbitrary 

element of PF. Obviously, this would be an element of some 

equivalent class, say  , , ,p f p P f F     and hence, 

could be expressible as  1,p g g f 
 

. Now,
F  

         1, ,Fp g g f p g p p f           . It 

can be shown that the above construction viz. F

FP M


  

is a fibre bundle in its own right.  

 

We, now, present some illustrations of associated bundles in 

the context of physical applications.  

 

(i) Consider the frame bundle LM as the principal bundle (P) 

over a smooth manifold M of dimension m with the right 

 ,GL m R  action given by     1,..., ,me e g GL m R

    1 1

1 1 1 1, ,..., ,..., , ,...,m m

m m m mg e g e g e g e . The fibre is the 

smooth manifold 
mF R  and the left action  : ,GL m R 

m mR R  is defined by    1 1
a a

b

b
g f g f   . Then, 

m

m
R

R
LM M


  is an associated bundle. There exists a 

bundle isomorphism m:
R

u LM TM  s shown in Figure 13 

m

m

u

R

TMR

id

LM TM

M M

 



 



 

Figure 13 

 

defined by
    m

m

,
, a

aGL m RR
LM LM R e f f e TM     

where ea, a=1,2,...,m constitute a basis of the tangent bundle 

TM to the manifold M. This is invertible for, given an 

arbitrary X TM , we can choose  a set of basis vectors ea, 

a=1,2,...,m in the tangent space TxM such that 

 1, 1,2,..., , ,...,a

a m xX f e a m e e L M LM    . We can, 

then, define the map m

1 :
R

u TM LM   by  
1

,uX e f


   

where  ,e f  is the equivalence class of e 

   , 1,2,..., , , 1,2,...,a

ae a m f f a m    . This map is, thus, 

independent of the choice of basis set in the given 

equivalence class.   

 

(ii) Consider the frame bundle LM as the principal bundle (P) 

over a smooth manifold M of dimension m with the right 

 ,GL m R  action given by     1,..., ,me e g GL m R

    1 1

1 1 1 1, ,..., ,..., , ,...,m m

m m m mg e g e g e g e . The fibre is the 

smooth manifold    m m*
p q

F R R
 

   and the left action 

           m m* m m*: ,
p q p q

GL m R R R R R
   

     is 

defined by      1 2 11 2

1 21 2 1

, ,..., , ,...,1 1

, ,...,, ,...,

p p

qq

i i i ii i i

j j jj j j i
g f f g 

     1

1

1...
p q

qp

i j j

j ji
g g g  . Then, F

FLM M


 is an 

associated bundle isomorphic as a bundle to 
p

qT M M

i.e. the (p,q) tensor bundle.  

 

(iii) We define the principal bundle and fibre as in (ii) above 

but modify the left action as 

       1 2 11 2

1 21 2 1

, ,..., , ,...,1 1

, ,...,, ,...,
det ...

p p

qq

i i i ii i i

j j jj j j i
g f g f g

 

     1

1

1 p q

qp

i j j

j ji
g g g  for some  . Then, the associated 

bundle F

FLM M


  is the (p,q)tensor density bundle of 

weight   over M. 

 

(iv) We define the principal bundle as in (iii) and the fibre 

F R  and modify the left action as    1 det .g f g f 

leading to the definition of scalar density as an associated 

bundle F

FLM M


 . 

.  

13.2 Associated Bundle Map: An ordered pair of maps 

 ,u h between two associated bundles sharing the same fibre 

but being associated to arbitrarily different respective 

principal G-bundles is a bundle map which can be 

constructed from a principal bundle map  ,u h  between the 

underlying principal bundles P and P‟ (i.e. ' u h  ,

    'u p g u p g  (Figure 14)_  

' '' ' '

G

G

P P M

u u h

P P M





 

  

 

 

Figure 14 

 

such that Figure 15 commutes i.e. that : 'F Fu P P , 

    , ,u p f u p f    , : 'h M M    h m h m

, ,p P f F m M     

 

'

'

u

F

F F

h

P P

M M

 



 



 

Figure 15 

 



                      

                        Asian Journal of Applied Science and Technology (AJAST) 

                         Volume 1, Issue 9, Pages 53-77, October 2017 

 

71 | P a g e                         Online ISSN: 2456-883X                                   Publication Impact Factor: 0.825                               Website: www.ajast.net 

It is easily seen that two F- fibre bundles may be isomorphic 

as bundles but may, at the same time, fail to be isomorphic as 

associated bundles.  

 

13.3 Trivial Associated Bundles: An associated bundle is 

trivial if the underlying principal bundle is trivial. A trivial 

associated fibre bundle is always a trivial fibre bundle but the 

converse need not hold.  

 

The sections : M P   of an associated fibre bundle 

F

FP M


 are in one to one correspondence to F-valued 

functions P F    on the underlying principal bundle. 

This can be established explicitly by constructing the section 

: Fs M P   corresponding to the given function P F  

by    ,s x p p x M       where  1p x   . This 

: Fs M P   is well defined and invertible.  

 

13.4 Extension and Restrictions of Associated Bundles: Let 

H be a closed subgroup of the Lie group G. Let P be a 

principal G-bundle and P‟ be a principal H-bundle, both over 

the same base space M. If there exists a bundle map  ,u f

such that /Figure 16 commutes 

 

' '' '

G

H

P P M

u u f

P P M





 

  

 

 

Figure 16 

 

then P M is called a G-extension of the principal 

H-bundle 
''P M  and 

''P M  is called the 

H-restriction of the principal G-bundle P M . It can be 

shown that any principal H-bundle can be extended to a 

principal G-bundle if H is a closed subgroup of G. A principal 

G-bundle can be restricted to a principal H-bundle if and only 

if (i) H is a closed subgroup of G and (ii) 'P H M  has 

a smooth section.  

 

14. CONNECTIONS  

14.1 Homomorphisms of Vector Fields and Lie Algebras: 

Let GP P M  be a principal G-bundle. Then, each 

element A of the Lie algebra TeG induces a vector field on the 

principal bundle P as:     exp ' 0 ,A

pX f f p tA p P  

 ,eA T G f C P    where the prime („) denotes different- 

iation with respect to the parameter t and the differential is 

evaluated at t = 0. We can, thus, define the Lie algebra 

homomorphism  : ei T G TP , 
AA X such that 

      , ,
eT G

i A B i A i B      where  .,.
eT G

is the Lie bracket 

in TeG.  

 

14.2 Vertical Subspaces: The vertical subspace p pV P T P

at an arbitrary point p P is defined by p pT P V P

 *ker    * 0pX T P X   . It can be shown that 

p P  , 
A

p pX V P i.e. that the vector fields generated by 

elements of the Lie algebra 
eT G  are vertical subspaces of the 

tangent space at a point p P . We have,
A

pX f   

      exp ' 0 , ,ef p tA p P A T G f C P    . Now, the 

curve    expt p tA   lies entirely within the fibre 

  1 p  . It follows that the push forward  * 0A

pX   

whence 
A

p pX V P .  

 

14.3 Connections on Principal Bundles: Let 
GP P M   be a principal G-bundle. Then, a 

connection is an assignment where for every point p P , a 

vector subspace p pH P T P is chosen such that (a) 

p p pH P V P T P  (b)    * p p gg H P H P (c)
p pT P X

   
p p

p p

H P V P

hor X ver X

 

  .(d) for every smooth vector field 

 X TP , both vector fields  hor X ,  ver X  are 

smooth. It may be noted that both  phor X ,  pver X  

depend on the choice of HpP.  

 

14.4 Connection One-form on Principal Bundles: The 

choice of a horizontal subspace HpP at each point p P of a 

principal G-bundle in order to provide a connection can be 

encoded in the thus induced Lie algebra valued one-form on 

P (not on the base manifold M) by the map 

:p p eT P T G p P    ,  p p p p eT P X X T G 

where    1

p p

p p p p e

V P T P

X i ver X T G 

 

 
 

 
 
 
 

 and  :p e pi T G T P , 

 A

p pA X ver X . However, since 
A

pX  always lies in the 

vertical subspace VpP, as proved above, the image of the map 

i restricts itself to VpP and we can write :p e pi T G V P . This 

map :p e pi T G V P  is invertible because a Lie algebra 

always maps diffeomorphically to its Lie group and the fibre 

here is the Lie group G.  p pX  is called the connection 

one-form with respect to the given connection. We can 

recover the subspace HpP from p as
pH P 

    ker 0p p pX T P X    .  

 

14.5 Properties of Connection One-form: p  has the 

following important properties: (a) 
eT Gi id  for

    
e

A

p p p p T Gi A X A A id    because fields 

generated by Lie algebra elements of eT G  are vertical so that 

 A A

p pver X X  (b)         1*

*

p p pg
g X Ad X  . We 

observe that the left hand side is linear so that it suffices to 

prove the above separately for p pX V P  and p pX H P . 
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Let p pX V P . Then, there exists an element in the Lie 

algebra 
eA T G  such that .A

p pX X  Then, 

       *

*

A A

p def of pullback p g p p g
p

g X g X   

      1* 1*

1 1* *
.g g

Ad A Ad A
A

p g p g p g pg g
X X Ad A Ad X 

 

   

Now, let 
hor

p p pX X H P  . Then,     * hor

p
p

g X

  *

hor

def of pullback p g pg X . But  
*

hor

p p gg X H P  

(since the pushforward  
* p p gg H P H P . Hence, 

p g

     1* *
0hor hor

p pg
g X Ad X   since    0hor

pX   . 

(c) p  is smooth. This follows immediately from (a).  

 

14.6 Local Representation of Connection One-form: We 

recall that a connection   was defined as a Lie algebra 

valued one-form i.e.  : eTP T G    satisfying (i) 

 AX A   and (ii)       1

*

*g
g X Ad X  . In 

practice, for computational purposes, it usually becomes 

necessary to restrict oneself to some open subset U of the 

base manifold M. We can, then, define the local 

representation of the connection  in two ways over the two 

spaces viz. (i) U M (ii) U G . (i) We choose a local 

section :U P   defined by Uid   . Such a local 

section induces a Yang-Mills field on U viz. 

 :U

eTU T G    defined as 
*U   . This 

U lives in 

U because of the pullback, (ii) We define the local 

trivialization of the principal G-bundle :h U G P   by 

   ,m U g G m g  . We can, then, define the local 

representation of   by  
     *

,,
: mm gm g

h u T U G T U 

gT G TP  . Thus, a pullback of   to U yields the Yang 

Mills local representation on the base manifold and a 

pullback to U G  gives us the local representation on the 

local trivialization.  

 

The relationship between these two representations is given 

by:  
 

      1 *

*

,
, ,U

g mgm g
h v Ad v v T U        

gT G where :g g eT G T G   with 
A

gL A and 
A

gL  is the 

value of the left invariant vector field *gl A  at g G

generated by the Lie algebra element eA T G .  

:g g eT G T G   is called the Maurer Cartan form on G and 

is a Lie algebra valued one form. We illustrate the above with 

reference to the frame bundle LM with M being a smooth 

manifold of finite dimension d and the structure group 

 ,G GL d R . We set up a coordinate chart (U,x) on the 

base manifold M. This chart induces a section at a point 

m U  given by  
1

,...,
d

m m

m
x x


     

     
     

. Then the 

Yang Mills field 
*U   is a Lie algebra valued one-form 

on U with the components  , ,
,

i
i U

j j 
 

, , 1,2,...,i j d   . To calculate the Maurer-Cartan one-form 

on  ,GL d R we identify an open subset  ,GL d R
 of

 ,GL d R  containing the group‟s identity element  ,GL d R
id

and set up the coordinate map   dd: ,GL d R Rx  with 

 , 1,2,..., : ,i

jx i j d GL d R R 
 
and  i i

j jx g g g  

 ,GL d R . We,then, have        exp ' 0A i i

g j jL x x g tA   

where the prime represents differentiation with respect to the 

parameter t and the derivative is evaluated at t=0 and   is 

the group operation of  ,GL d R .The expression 

    expg tA t   constitutes a curve in G and  0 g  . 

Hence, the above equation represents the action of the vector 

field ,

A

gX L   on the functions  i

jf x C GL    and 

evaluation the result at g of G.  In view of the definition of the 

coordinates as  i i

j jx g g , we can write the right hand 

side as      exp ' 0
ki i k

k k jj
g tA g A . Thus, we can write 

A i k

g k j i

j g

L g A
x

 
  

  

 . The Maurer-Cartan form has to 

recover A from 
A

gL  so that it will be given by

     1
ii k

g jj k
g dx   for       1

i
A k

g g jk
L g dx 

p r

r q p

q

g A
x

 
 
  

   1 1
i i

p r k q p r i

r q p j r j jk p
g g A g g A A     .  

 

14.7 Local Transition Rule for Connection One-form: Let 

P be a principal bundle with a smooth manifold M of finite 

dimension d as the base manifold. Let 
  1

,U x  and 
  2

,U y  

be two overlapping charts on M so that 
   1 2

U U  . Let 
   1 1

:U LM   and 
   2 2

:U   LM be sections from 
 1

U  and 
 2

U  respectively. We introduce a gauge 

transformation defined at every 
   1 2

m U U  , 
   1 2

:U U G    by 
       2 1

m m   m  which 

is possible because the right action of G in P is free. We, then, 

have the transformation rule 

   
 

      1

*2 1

,* mm
m Ad m m   

     . We illustrate 

this transformation rule by performing explicit calculations 

for the frame bundle LM as the principal bundle with the 

structure group  ,G GL d R . We set up two overlapping 

coordinate charts 
  1

,U x  and 
  2

,U y  as above and 

consider a point 
   1 2

p U U  . We have 
   1 2

:U U 

G  and : g eT G T G   so that 
    1 2* :T U U  

eT G . We take a an arbitrary basis vector 
px

 
 
 

of 
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    1 2
T U U  at the point 

   1 2
p U U   and act on it by 

*  . We have    
 

 

*

*

i i

p jp j
p p p

x x 



                       

     
 

 

  1 1

*

i i
k

j
k p k

p p

p dx p
x

 




               

 

 *

k

j

p p

x
x



  
     

     
1

i
k

j
k

p

p x p
x

  
   

 

     
1

i k

jk
p

p p
x

  
   

 
so that     1*

ii

p j k
p


   

  
k

j
p

p dx
x





 
 

 
 .

i

j
d Ω Ω . We, now, calculate 

 

   1

1

*p
Ad p

explicitly. We note that the adjoint map is 

:gAd G G  such that 1h ghg h G   . Hence 

 gAd e e  whence  * :
g

g e eAd e
Ad T G T G T G  . It can be 

shown that given an arbitrary 
eA T G , we have 

1

*gAd A  gAg  so that the transition rule between two Yang 

Mills fields on the same domain 
   1 2

U U is 

         2 11 1

, ,

i ki i
l k

j lk kj l


 
         Now, let, 

in the given case, 
   1 1

:U LM   and 
   2 2

:U LM   

be sections from 
 1

U  and 
 2

U  respectively induced by the 

choice of the coordinate maps 
 1 d:x U R ,

 2 d:y U R  

whence 
i

i

j j

y

x


 


 and  1

i
i

jj

x

y

 
 


.are the Jacobians 

and
     

2
2 1

'
, ' ,

i l i ki k

k j k l
j l

y x y x y

x y x y x x



  
 

     
  
      

 

where '   relates to the transformation of coordinates 

that was not considered earlier under the premise that the 

connection one-form was kept independent of the coordinate 

transformations.  

 

15. PARALLEL TRANSPORT  

15.1 Horizontal Lift of a Curve: Let  : 0,1 M   with 

 0 a  ,  1 b   be a smooth curve on the smooth base 

manifold M. Then the unique curve  : ,a b P    through 

a point     10 p a     which satisfies (i)      

(ii) 
    

,
0 0,1ver X

  
      (iii) 

  * ,
X

  
   

 
 

,
0,1X

  


 
   is called the horizontal lift of   through 

p. There exist infinite number of horizontal lifts of a curve. 

However, specification of one point on the lift makes the lift 

unique.  

 

15.2 Explicit Expression for Horizontal Lift of a Curve: We 

proceed in two steps : 

(A) Generate the horizontal lift by starting from some 

arbitrary curve  : 0,1 P   that projects down to the 

original curve i.e.     by action of a suitable curve 

 : 0,1g G  such that      g t      . g will dep- 

end on the relationship between the position of δ and the 

corresponding point on the desired horizontal lift in each 

fibre.  

 

(B) The curve  : 0,1g G  will be the solution to an ODE 

with the initial condition   00g g  where 
0g  is the unique 

group element for which   00 g p P    through which 

the lifted curve is supposed to pass. We shall locally 

explicitly solve the ODE for  : 0,1g G  by a path ordered 

integral over the local Yang Mills field.  The first order ODE 

for  : 0,1g G  is
         1 ,* gg

Ad X
     

 

  ,
0

g g
X


  to be solved with the aforesaid initial 

condition. In the special case when G is a matrix group, this 

ODE takes the form         
1

,
g X g

    
  



   
1

0g g 



   or 

        ,
0X g g

    
  



   

where the product ● denotes matrix multiplication and the 

superscript ● denotes differentiation with respect to λ. To 

solve this ODE locally, we focus on a chart (U,x)and choose a 

local section :U P   (so that Uid   ). This induces 

two objects viz. (i) a curve     . This curve invariably 

projects down to   on M i.e.     and (ii) Consider 

 ,
X

  
 being an arbitrary tangent vector to the curve   in M. 

The pushforward of  ,
X

  
 under :U P   must yield 

 ,
X

  
, the tangent vector to the curve      i.e. 

    * , ,
X X

     
  . Hence, we have 

    ,
X

    


       
    *

* , ,def of pullbackX X
         

    

     ,

,

U

def of Yang Mills fields X

   
      

,

,,

U X 

    
  . Thus, the 

second object that is induced from the local section 

:U P   is the Yang Mills field 
, *U     . Making the 

substitution 
         

,

, ,,

UX X 

        
   , dropping the 

indices U, σ and noting that  ,
X

    is a tangent vector to 

and hence, can be expressed as the derivative   


 we write 

the ODE in the special case of matrix groups as

        
,

g g


  
   

 

    with the initial condition 

  00g g . This ODE can be integrated recursively to obtain 

the path ordered integral     0

0

exp

t

g t d g 
   

    
    
P   

where       
,



  
  



    and P  denotes “path 

ordering”.  Thus, locally, the horizontal lift of the curve 
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 : 0,1 U P   is given by the explicit expression: 

        ,

0,

0

exp U

t
dt t g





 
     


 




         
      

P . 

15.3 Parallel Transport: Let  : 0,1 M   and let 

 : 0,1 P    be its horizontal lift through 

   1 0p   . Then, the parallel transport map 

       1 1: 0 1T        is defined by  1pp  
 . 

This map is a bijection due to the fact that  
*

.p p qg H H   

 

Let GP P M   be a principal G-bundle and let   

be a connection one-form on P. Let F

FP M


  be an 

associated bundle on whose typical fibre F, the group G acts 

from the left by its left action . We recall that 

      1, , ', ' iff ; ' , 'FP p f P F p f p f g G p p g f g f        

Let  : 0,1 M  be a curve on the base manifold M and let 

 : 0,1 P    be its horizontal lift through 1p  

   0 . Then the horizontal lift of  : 0,1 M   to the 

associated bundle that passes through  , Fp f P     is the 

curve  : 0,1
FP

FP    with     ,
FP

f     
 

.  The 

parallel transport map is then defined in the associated bundle 

as        1 1: 0 1FP

F FT       defined by  ,p f   

   ,
1

FP

p f
 

. This map also provides a bijection between the 

fibres in the associated bundle.  

 

16. CURVATURE & TORSION 

16.1 Covariant Derivative: Let GP P M   be a 

principal G-bundle and let   be a connection one-form on 

P. Let Φ be a  k- form, and define  0: kD T P    by 

      1 1 1 1,..., ,...,k kD X X d hor X hor X    . Then, D is 

called the covariant exterior derivative of Φ.  

 

16.2 Curvature: Let GP P M   be a principal 

G-bundle and let   be a connection one-form on P. Then, 

the curvature of the connection one-form ω is the Lie algebra 

valued two-form on P given by  2

0: eT P T G   , 

D  . We have d      where we define   by 

its action on a pair of vector fields on P,  ,X Y TP  by 

      , ,X Y X Y     where .,.  is the Lie 

algebra bracket in TeG. The compatibility of the above 

expression follows from the fact that on the LHS ω is Lie 

algebra valued while on the RHS, .,.  is also Lie algebra 

valued. To establish that d      , we note that   is 

a two-form and hence, is billinear We can, therefore, 

establish this identity by proving it for the three cases (i) X,Y 

are both purely vertical (ii) X,Y are both horizontal and (iii) 

one (e.g. X) is horizontal and the other (Y) is vertical. (i) Let 

both X,Y be vertical so that both  ,X Y TP  which means 

that they are generated by some elements of the Lie algebra 

TeG i.e. , eA B T G   such that 
AX X  and 

BY X .Hence, 

LHS is  ,A BX X  ,A B

def of D X X
def of D d

    ,A Bhor X hor X  0,0 0d   since both  Ahor X

 Bhor X  vanish because X,Y are assumed vertical fields. 

The RHS gives    , ,A B A Bd X X X X   

           , ,A B B A A B A BX X X X X X X X         . 

Now  , ,A B

def ofX A B   . Further, there exists a Lie 

algebra homomorphism  eT G TP  under which the 

generator of a field maps to the field i.e. 
,, A BA B X and 

 ,A BX X     ,A BX ,A B     ,A BX X  .  

Putting all these pieces together and using the commutativity 

of 
AX  and  

BX , the RHS vanishes as well. (ii) Let both X,Y 

be horizontal. Then  LHS is  ,X Y  ,def of D X Y

    ,def of D d hor X hor Y  ,d X Y  since both X,Y 

be horizontal so  hor X X ,  hor Y Y . The RHS gives 

   , ,d X Y X Y         , ,d X Y X Y   

 ,d X Y  because     0
def of

X Y


    since they 

have no vertical component. (iii) Without loss of generality, 

we may assume that X is horizontal and Y is vertical because 

  is a two form and hence antisymmetric so that if both 

LHS and RHS vanishes for X horizontal and Y vertical, they 

would also vanish for the opposite combination. Proceeding 

as in (i), we identify 
AY X for some

eA T G . Then LHS 

gives       , , 0A AX X d hor X hor X    as  Ahor X

0  as it has no horizontal component by assumption.  RHS 

is          , ,A A A Ad X X X X X X X X      

 , AX X        , AX X  . Now   0def ofX   ,

 A

def ofX A  , .  Also  , 0AX X      since , AX X    

is horizontal.   0X A   as X is horizontal, by assumption, 

and A is the generator of a vertical vector field. Hence, the 

RHS vanishes as well, thereby establishing the desired 

equality.  

 

If G is a matrix group, then we can write 
i i i k

j j k jd       where   denotes usual exterior 

matrix multiplication.    

 

The connection one form ω as well as the curvature two-form 

  live on the given principal G-bundle P. We, now, try to 

obtain the corresponding objects on the base manifold M. For 

this, we consider a chart (U,x) at a point p M  and define a 

section :U P  . This section induces (i) the pullback of 
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the connection ω on U which is a Lie algebra valued 

one-form 
*   viz. the Yang Mills field  * 1 M   

eT G (which is not a tensor) and (ii) the pullback of the 

curvature 
*   called the Riemannian (Riem) or the Yang 

Mills field strength which is a Lie algebra valued two-form 

 * 2

eRiem M T G   . In passing, we note that 

* * * *d           so that Riem d   .  By 

the Bianchi‟s first identity, we have 0D   . 

 

16.3 The Solder Form: Consider a principal G-bundle 
GP P M   and let   be a connection one-form on 

P and let V be a linear representation space of G. Then, a 

V-valued one form θ on P is called a solder form if (i) θ is a 

V-valued one form i.e.  1 P V   where Vis a linear 

representation space of G with dim V=dim M. (ii) 

    0ver X X TP     (iii)  
*

g    . This is the 

G-equivariant condition that ensures that if one moves the 

solder form from a point in a fibre to another point in the 

same fibre it remains invariant. (iv) There exists an 

associated bundle isomorphism between the tangent bundle 

and the associated bundle PV associated bundleisomorphism VTM P  

This makes sense because G is supposed to act on V anyway 

as V is the linear representation space of G. Thus, the solder 

form enables an identification of the linear representation 

space V of G with each tangent space of M.  

 

Thus, while the connection one-form ω is Lie algebra valued 

and it annihilates a horizontal vector field, the solder form θ 

is a linear representation space valued one-form that 

annihilates the vertical vector fields.  

 

We illustrate the concept of solder form by reference to the 

frame bundle P= LM as a  principal  ,GL d R -bundle with 

base manifold M of dimension d. Let e be an arbitrary frame 

with the corresponding coframe  . We have  : TP  

dR V defined by     1

*e eX u X   where 

 
d:e e

u R T M


  as 0,0,..,0, 1 ,0,..,0,0
th

i

i entry

e
 
 
 
 

 so 

that  
1 d:e e

u T M R


   takes  a vector  Z Z  i.e. its 

components in the base manifold. This is easily seen. Given a 

tangent vector X in the principal bundle TP, * X  would be 

tangent vector in the base space whence   1

*eu X
 are 

the components of the tangent vector in the base space M.   

 

16.4 Torsion: Consider a principal G-bundle 
GP P M   and let  , θ be the  connection 

one-form and solder form on P. Then, the torsion   is 

V-valued two-form defined by  2D P V    . We 

have 
*d      where 

*  is the action of the Lie 

algebra valued ω on the V (linear representation space) 

valued θ. For a matrix group 
*i i i k

kd      . The 

second Bianchi identity for torsion gives 
*D    . D

is V-valued three-form i.e.  3D P V  . As in the case 

of curvature,  ,  resides in the principal bundle P but we 

can obtain its pullback to the base manifold and define 

 * 2T M V     

.  

17. COVARIANT DERIVATIVES 

Consider a principal G-bundle GP P M   and let 

 be the connection one-form on P. Let F

FP M


  be an 

associated vector bundle on which we define the left action of 

Gas :G F F  where F is a vector space equipped with 

the usual addition and scalar multiplication. This left action is 

linear i.e. :G F F (F being a vector space) The 

connection   on P effects a parallel transport between the 

fibres of P/ We define a section : FM P   F Mid  

on the associated bundle and claim that there exists a unique 

G- equivariant function : P F  on the principal bundle 

such that    is a bijective correspondence. The 

G-equivariance condition mandates  p g 

 1g p


 . We establish this as follows: (i)Let a 

G-equivariant : P F  be given.  We construct the map 

: FM P  defined at every point x M by

   ,x p p      where   1p x  . This map is well 

defined as  given   1' , ' ,p x p p    there exists a unique 

'g G p p g  . Then    ', ' ,p p p g p g       

 1,p g g p     ,def of equivalenceclass p p    . Also, 

      ,F Fx M p p p x          because p

  1 x 
 confirming that   is, indeed a section. (ii) Let the 

section : FM P   on the associated bundle be given. We 

construct the map : P F   by      1

pp i p    

where the map    1:p F Fi F p P    is defined by 

   ,pi f p f     . pi is a bijection.  We, also,  have 

     1, ,pi f p f p g g f        1

p gi g f . To 

show the G-equivariance of  , we have  p g

                 1 1 1

pp g p g p g
i p g i p i i p        

     1 1

p gp g
i i g p
   1g p

  thereby establis- 

hing G-equivariance of : P F  (iii) We, finally, 

establish that 
'

'


   for any given sections   , '  on 

the associated bundle and similarly, 
'

'


   for functions   

, '  on the principal bundle.  We have  
'

x M


 

 ',p   for some   1p x     1, 'pp i p  
 

         1 ' ' ' .p pi i p p x        Similarly  
'

p P


 
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            1 1 1

' , ' ' 'p p p pi p i p p i i p p             

as required.  

 

We, now, make use of the G-equivariance to establish an 

important result. We have,    1p g g p  . 

Expressing g G  in terms of its Lie algebra generator, say 

eA T G , we obtain       exp expp At At p   . 

In the context of the linear left action :G F F  where 

F is a finite dimensional vector space, we have 

          
0 0

exp , expA

p

t t

d d
p At d p X At p

dt dt
  

 

 

     A

pA p X p       or    A Ad X X  

0  for a linear left action.  

 

We define the covariant derivative  T FP   in the 

associated bundle with respect to a section : FM P   of a 

tangent vector T at a point x M i.e. 
xT T M  satisfying (i) 

 , ,fT S T S xf f C M S T T M   

        (ii)  T   

 ,T T FP        (iii)    T f Tf     

Tf     , Ff C M P   . 

 

We, now, need to construct an equivalent structure on the 

base manifold M. For this purpose, we proceed in two steps: 

(i) Let a section : FM P   on the associated bundle be 

given. We can, then,  construct the map : P F   by 

     1

pp i p    that lies on the principal bundle as 

explained above. This map is bijective. : P F    is a 

G-invariant fibre valued zero-form on the principal bundle P. 

We define the covariant derivative D  by its action on a 

vector or pointwise action on a vector field as

    D X d hor X  , ,pX T P p P  . We establish 

that        D X d X X X      . First, we assume X 

to be purely vertical. Then there exists a unique Lie algebra 

generator A of X i.e. there exists unique 
A

eA T G X X  . 

Now, LHS is      0D X d hor X    because X being 

vertical, its horizontal component vanishes.  

      0d X X X    by the property of 

G-equivariance proved above. Now, let X be horizontal, so 

that LHS is       D X d hor X d X     whereas the 

RHS is        d X X X d X      because  X  

vanishes for a horizontal field. We write    XD X D   

for pX T P and note that this is linear in X. (ii) So far we 

have computed a covariant derivative that acts on vectors in 

the principal bundle. However, we want a covariant 

derivative that acts on tangent vectors in the base manifold. 

To obtain this structure, we follow the usual scheme of taking 

pullbacks of the various quantities involved. Hence, we start 

by defining a local section :U P   where U is an open 

subset of M. We define the pullback of : P F   by the 

section :U P   as * :s TM F   which is a local 

F-valued function. Similarly, the connection 

 1

eP T G   has the pullback under  as the Yang Mills 

field  * 1

eM T G    and  1D P F    has the 

pullback    * 1D M F    . Putting these pieces toge- 

ther,        * *

T xs T D T d T T T M         

              * * * * *d T T d T T T             

     ,Uds T T s T  . 

 

18. CONCLUSION 
An attempt has been made in this article to present a 

pedagogical introduction to the theory of fibre bundles from 

the perspective of a physicist assuming a minimal knowledge 

of topology and algebra.  Emphasis has been laid on the 

conceptual development of the subject in a manner that is 

amenable to physical applications. Some contemporary 

applications of fibre bundles in physics and econophysics are 

proposed to be covered in a sequel to this write-up. As is to be 

expected in a work of this nature, no originality over the 

contents is claimed, although some innovative features are 

definitely embedded in the pedagogy and the presentation.  
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