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ABSTRACT

The asymptotic estimates of the expected number of real Zeros of the polynomial

T (9) :g]_COS (9 +g ZCOS 29 +..... g nCOS n6’ where g;(j=1,2,.....n) is a sequence of independent normally

distributed random variables is such a number. To achieve the result we first present a general formula for the covariance of the
number of real zeros of any normal process, e(t), occurring in any two disjoint intervals. A formula for the variance of the number of

real zeros of e(t) follows from this result.
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1. 1. INTRODUCTION

Let T(O) ETO(Q,w):Zn:gj(w)cosj@,(l.l) where gl(zv),gz(w), ....... g n(w) is a sequence of

j=L
independent random variables defined on a probability space ((Q, l, PI’) , each normally distributed with mean zero
and variance one. Much has been written concerning N K(O,Z]Z’), the number of crossings of a fixed level K by
T(0), in the interval (0,2 7T ) . From the work of Dunnage (2) we know that, for all sufficiently large n, the mathematical

expectation of N 0(0,271’) =N (0,272) is asymptotic to 2n/ \/§ In [3] and [5] we show that this asymptotic

number of crossings remains invariant for any K EKn such that K2/n — 0asn — oo. However, less

information is known about the variance of N (0,272') . The only attempt so far is ....where an (fairly large) upper

bound is obtained. Indeed this could be justified since the problem with finding the variance consists of different levels
of difficulties ...... with finding the mean. The degree of difficulty with this challenging problem is reflected in the

delicate work of Maslova [8] and Sambandham et al., [7] with above obtained the variance of N for the case of random
. _ n j. . . _ _ . .
algebraic polynomial ZJ Og jX , acase involving analysis that is usually easier to handle. Qualls [9] also studied

the variance of the number of real roots of a random trigonometric polynomial. However, he studied a different type of
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n . ..
polynomial ZJ Oa j Ccos jl9 +b j SIn j(9 which has the property of being stationary and for which a special

theorem has been developed by Cramer and Leadbetter [1].

Here we look at the random trigonometric polynomial (1.1) as a non-stationary random process. First we are seeking to
generalize Cramer and Leadbetter’s [1] works concerning fractional moments which are mainly for the stationary case.

To evaluate the variance specially, and some other applications generally it is important to consider the covariance of

the number of real zeros of 5(’[) in any two disjoint intervals. To this end, let ﬁ(t) be a (non-stationary) real valued

separable normal process possessing continuous sample paths, with probability one, such that for any 917&(92 the
joint normal process 5(6’]), 5(6’2), f' ((9]) and f' (92) is non singular. Let (a,b) and (c,d) be any disjoint

intervals on which f(t) is defined. The following theorem and the formula for the mean number of zero crossings [1,

page 85] obtain the covariance of N(a,b) and N(c,d).

Theorem 1. For any two disjoint intervals, (a,b) and (c,d) on which the process f' ((91) is defined, we have

db ©o «
E{N(a,b)N(c,d)}=[[ [ [[xy|p616,(0,0,x, y)dxdydo,dg,

Cca—oo—oo

where for & <1< band c <0,<d , pH1.05(%X1,X2, X, Y) denotes the four dimensional

density function of 5(91), 98(92), f‘ (91), é‘” (92)

A modification of the proof of Theorem 1 will yield the following theorem which, in reality, is only a corollary of
Theorem 1.

Theorem 2: For p‘91-‘92(X1,X2’ X, y) defined as in Theorem 1 we have

db o o
2
EN“(a,b)=[[ [ [[xy|p610,(0,0,x, y)dxdydo:,d6,
ca—o0—o
By applying Theorem 2 to the random trigonometric polynomial (1.1) we will be able to find an upper limit for the

variance of its number of zeros. This becomes possible by using a surprising and nontrivial result due to Wilkins [12]

which reduces the error term involved for EN (0,272') to 0(1). We conclude by proving the following.

Theorem 3. If the coefficients gj(w), j=1,2,....n in (1.1) be a sequence of independent random variables defined on
probability space (Q, /1, PI’), each normally distributed with mean zero and variance one, then for all sufficiently

large n the variance of the number of real zeros of T(0) satisfies
var{N (0, 7)} = 0(n%/?)
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2. THE COVARIANCE OF THE NUMBER OF CROSSINGS
To obtain the result for the covariance, we shall carry through the analysis for the number of upcrossings, N,. Indeed,

the analysis for the number of down crossings would be similar and therefore, the result for the total number of

crossings will follow. In order to find E{N u(a, b)Nu(C, d)} we require to refine and extend the proof

presented by Cramer and Leadbetter [1, page 205). However, our proof follow their method and in the following, we

highlight the generalization required to obtain our result. Let ak=(b—a)k2_m +a and similarly

b ji= (d - C)| Z_m + C for k, | = 012,.... 2m - L and we define the random variable Xk,m and XIm as

1 ifd(ax) <0<<S(ag)

Xk, m= ]
0] otherwise
And
1 ifé(b)) <0< &b
Xlm — ¢(by) .5( 1+1) 2.1)
0 otherwise
In the following we show that
2Mm_12M_1
Y= 2, 2. Xk,m, Xl,m
I=0 k=0

tends to N u(a, b)Nu (C, d) adS M —> o0 with probability one. See also {1,page 287}. We first note that
E{N u(a, b)N U(C, d)} is finite and therefore {N u(a, b)N U(C, d)} is finite with probability one. Let v
and r be the number of upcrossings of f(t) in (a,b) and (c,d), respectively, and write ty,t,,.....t, and t’y, t’5...t", for the

points of upcrossings of zero by f(t) , there can be found two sub intervals for each I, and Jg, such that f(t) in
one is strictly positive and in the other, it is strictly negative. Thus it is apparent that Y, will count each of tt;’. That is,

Y mZ VI, for all sufficiently large m. On the other hand, if

§(ak)§(bk+1) <0and §(bt)§(bt+1) < Othen f(t) must have a zero in
(ak,akq) and (by,by1) andhence Y (< VI and hence Y (m—>N,(@,b)N ,(c,d) as m — oo,

with probability one. Now from (2.1) we can see at once that

2M_12M_
EVm= > 2 Pr(X,mX;m=1)
I=0 k=0
2M_12M_1
= > D Pr(Xy,m=X;m=1) (2.2)
I=0 k=0
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We write 7] for the random variablezm{f(ak+1)—f(ak)} and  similarly 77'1 for

m{g(bk{]_)— §(bk )},then we have
Pr(X,m=Xm=1)
=Pr(0>&(ay) >2 Mn,and 0> £(by) >2""n))

00002 Mx 2—my

=[] ] [Pmk (2,22, % y)dzydzpdxdy (2.3)
00 O 0

For ki1, (z1,22,X,y) denotes the four dimensional normal density function for 77| and 77'k . A simple calculation shows
see [6] or [1 page 207], that if (91 and 6’2 are the fixed interval (a,b) and (c,d), respectively and k., and I, are such

that @ <@i<a and by <@-<b for each m, then all members of the covariance matrix of Py
k k | 25| K,
m 1 m+1 m m+1

(21,25,x,y) will tend to the corresponding members of the covariance matrix of p6’1 ,92 (21,22,X,y). This co-variance

matrix is, indeed, nonsingular. Now let { = 2m 2] andr = 2m Z, then from (2.2) and (2.3) we have

om_1oM_4 oo X Y
E0Vm= Y X 27" [[[[Pmk 122", x, y)dtdrdxdy
=0 k=0 0000
bdoowoxy
=[[]]]]¥mO02(2 "2, x, y)dtdrdxdyddyde,  (2.4)
ac0000

inwhich W 1,601,802 (t,1,%,y)=Pm,K I, r, X, Y) for ay<fi<ay,q and by<@o<by g .1t

follows, similar to [1, page 206], that M —» 0O

\Pm,Hl,Hz(Z_th_m r, X, y) —> p¢9192(0,0, X, y) Which together with dominated convergence

proves Theorem 1.

3. THE VARIANCE OF THE NUMBER OF REAL ZEROS
It will be convenient to evaluate the EN(N-1) rather than the variance itself since N(N-1) can be expressed much more

simply. The proof is similar to that established above for covariance, therefore we only point out the generalization

required to obtain the result. To avoid degeneration of the joint normal density. p91,92(21, Z9, X, y) , we should

omit those zeros in the squares of side 2™ obtained from equal points in the axes (and therefore to evaluate EN(N-1)).

To this and for any g=(g1,0,) lying in the unit square and c>0, let A, denote the set of all points g in the unit square that
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for all s belonging to the squares of side 2™ set containing g we have ‘81—82‘ > & . Let ﬂ*mg denote the

characteristic function of the set ﬂ“mg . Finally, similar to the covariance case, let

_ 1 ifg(ar) <0< g(ak)
KM 10 otherwise

for k=0,1,2,....2"™-1, where A} = (b — a)k2_m + a. Now let

21 2™ e o
M= Z Z Xk,mxl,mlmg(2 k,271) (3.1)
k=0 (1=0,1%k)

Similar to [1,page 205] we show that My, is a non decreasing function of m for any fixed e. It is obvious that M, is a

non decreasing function of e for fixed to m, and then by two applications of monotone convergence it would be justified

to change the order of limits in | | ms—)O | | mm—>oo | | mmg . To this end, we note that each term of the sums
of M me corresponds to a square of side 2™ For fixed & > 0, the typical term is one if both of the followings

statements are satisfied; (i) every point s=(s3,5,) in the square is such that ‘81—82‘ > & and (ii) Xgm=X;m=1. When

m is increase by one unit, the square is divided into four subsquares, in each of which property (i) still holds.
Correspondingly, the typical term of sum is divided into four terms, formed by replacing m by m+1 and each k or | by
2k and 2I, for ax.; and aj.. Since Xy m=X; m=1 we must, with probability one, have at least one of these four terms equal

one. Hence M, is a non decreasing function of m.
In the following, we show that | | Mmoo | | M, _50S =N u(N u—l).

We first note that if the typical term in the sum of M me s nonzero it follows that ‘31—82‘ > &, since it is

impossible to have §(ak) <0< 5(ak+1) and §(ak+1) <0< §(ak+2). Therefore, the

characteristic function appearing in the formula for M me N (3.1) is one and hence

) 2M_1 2M_
||mg_>oM me— Z zxk,mxl,m (3.2)
k=0 (1=0,1=k)

(3.2) is clearly in the form of Y, defined in Section 2 except that the summations in (3.2) cover all the k and | such that

K # | . Hence from (3.2), we can write

I imm—)oo I i mg_>OM mé‘:N U(N U_l)

Therefore the same pattern as for the covariance case yields

E[N u(as b){N u(av b) _1}]
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=lim,_o] | [V Ps,.020.0,x,y)dxdydod6, (3.3)
D(£)00

where D(&‘) denotes the domain in the two dimensional space with coordinates (91,92 such that @ <@1,92< b
and ‘91—492‘ > & . Now notice that for 91=6’2= 0 the p6?1.<92(0,0, X, y) degenerates to just
Po (O, X) , the two dimensional joint density function of 5(9) .and 5' (19) . Hence from (3.3) we have

E[N u(a’ b){N u(a, b) _1}]:

b boooo b o
[T ] ]1xY:pg, 0, (0,0,%, y)dxdyd6,d&; - | [|x], pe(0, x)dxdE
aa00 a0
boo
Now since II‘X‘, pg(O, X)dXd@ is EN u(a, b) the result of Theorem 2 follows.
a0

4. RANDOM TRIGONOMETRIC POLYNOMIAL

To evaluate the variance of the number of real roots of (1.1) in the interval (0, T ) we use Theorem 2 to consider the

interval (8',7[—8'). The variance for the intervals and (8',7[—8') are obtained using an application of

-1/2 . . :
Jenson’s theorem [10, page 332] or [11, page 125]. We chose g'=n which as we will see later, yields the

smallest possible error term. First, for any 91 and 492 in (8',7[—8') such that ‘91—92‘ > & where

-1/2

g'=n we evaluate the joint density function of the random variable

T(@D,T(@Z),T'(Ql) andT'(02) . Since for any & we have

icos jo =l[sin{(n+1/2)8}/sin(0/2)-1]/ 2
j=1

and also since for the above choice of 91 and 92, 91+92< 2(72' - 8') we can show

n
A(61,02) = coviT (87), T(82)} = > cos jo&, cosjO,
j=1

sin{(n+1/2)(0, - 05)}/sin{(61- 05) 2}
N L sin{(n +1/ 2)(O1+ 0,) 1/ sin{(Or+ 05) 1 2} — 2}
—O(/&)+0(/&") (4.1)
Similarly, we can obtain the following two estimates
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Page | 233

n

C(601,0,) =cov{T (0y), T(82)} == jsin jO; cosjO,
j=1

= (91 90){A0,0,} =0/ e+ 2 +nle+e™?) (4.2)

and
n
B(61,07) = cov{T (6y), T(82)} = jsin jo sinj 9,
j=1
= (91960,){COL0,}=0(N*Ie+nle? +n?le+nle?+e®) (4.3)

[3,page 1405] we obtain

Also in the lemma in

var(T (6,0)) =n/2+0(&™1), var(T' (6,0)) =

n3/6+0(n%/&+n/ &% +&3)

and
cov{T ()T (8,)} =0(n/ &'+&2)
These together with (4.1)-(4.3) give the covariance matrix for the joint density function
T(6),T(0,),T'(6) and T*(6)sas
n/2+0("1)  A0L02) C(61,61 C(026D
3| AL02) n/2+0(")  C(0162) C0202) | (ua

C(01,60) C(0187) n3/6+0(n?/¢) B(61,07)

C(02,67) C(02,69) B(01,62) n3/6+0(n%/¢")|
This covariance matrix for all N > 4,0 <01,02< 7 such that 81702 is positive definite. Hence Z ‘ >0 and, if

Zij is cofactor of the (ij)th element of Z , then 233> 0, 244> Oand 234= 243 . From [1,page

26] we have

P61.8(0,0,X%,y)
_ -1/
:(4;;2) 1‘2 ‘ 1 2exp[— {233x2+z44y2 +(234+Z43 )xy}lz‘z H (4.5)
Now let g= (233/‘2 ‘ +)1/ 2 xands = (244/‘2 ‘ +)U 2 Y. Then from (4.5) we can write

© oo
.[ ,“X’ y|p6*1.¢92(o,o, X, y)dx dy

— OO0 —O0O
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=(4ﬂ2)_1‘233‘_1z44_lj I|q,s|expL(q2+52+2pqs)/2}1q ds (4.6)

—00 —00

where p = (Z 34 +Z43 )/ Z(Z 33244 )1/2 and 0 < p2 < 1. The value of the integral in (4.6) can be

1/2 1/2

obtained by a similar method to [1, page 211]. Let U = (1— p2) gandv = (l—p2) S then we have

0000
I :“-expL(q2+52+2pqs)/2}1qu
00

= (1-p2)'lTTexp¥(u2 w2y 2puv)/2(1—p2)}ju dv

00
(1. p2) L2 {1/2 - (ﬂ)—lg(l_ x2)"1/12 4,
0
=(1- p2)'1/2 arccos p = ¢csc ¢ 4.7)

where p = COS ¢ . Use has been made of the fact that (see for example, [1, page 27]

o ole o}

J-J‘exp%(u2 rv2 +2puv)/2(1—p2)}ju dv
00
_ (1 p2) 112 {1/2 B (”)—1}’.?(1_ %2~/ 2 g
0
Therefore from (4.7) by differentiation we can obtain
o0 OO
j J‘qsexpé(qz +s2 +2pqs)/2}1q ds
0—o0
— -(d1)/(dp) = csc? (1 goot ). (4.8)
(4.8) we can easily show that
o0 OO
I Iqsexp%(qz +s2 +2pqs)/2}1q ds
00—

= csc2pfl+ (7 — geotp)}

Which together with (4.8) evaluates the integral in (4.6) as
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o0 o0
j J‘|qs|exp¥(q2 +s2 +2pqs)/2}iq ds

—0O0 —00
= dcsc2gll+ (12— p)cotp) (4.9)
Now from (4.4) we can show
—no 4, N _
244—n /24+0(n /8)—233 (4.10)

and

234:O(n4/5') => s (4.11)

Also from (4.10) and (4.11) and with the above choice from (4.9), we can obtain

p=(Dayt D s J23 gy Sy 2 —0ns) > 0asn

Therefore ¢ — 7/ 2 for all sufficiently large n and hence from (4.9), we can see

(o OlNNe o]
I J.|qs|exp%(q2+52+2pqs)/2}iq ds
—00 —00

=4+0(@/ng") (4.12)

Also from (4.1)-(4.4) we can write
> |=tn/2+0 3 16+0(e + 671

Therefore from this (4.6) and (4.12) the integrand that appears in (3.3) is asymptotically independent of 61 and 62

and since by the definition of D(e), the area of the integration is (7 — 25')28(72' —-2&")+ g2 =724 O(e+¢&")

we have
E[N(s', 7—&"){N(e', 7 — &) -1}] = n2/3+ O(n/e+ng +n¢g') (4.13)

We now denote the mathematical expectation of N? in the interval (0,e). Similar to [2] or [3, page 1407] we apply

Jensen’s theorem on a random integral function of the complex variable z,

n
T(z,w)= > g j(w)cos jz
j=1
Let N(r) denote the number of real zeros of T(z,w) in z<r. For any integer j from [3, page 1408] we have
PIN(e") > 3ne+j]< @/Vme 2 exp(—jr2—n2e ji2) <312 (414
Let n'= [3ng'] be the smallest integer greater than or equal to 3n&" then since N(£') < 2n is a non negative integer,

from (4.14) and by dominated convergence, for efficiently large n we have

EN(e) = Y (2] ~)Pr(N(¢) 2 )
j=0
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n
= D> (2J-DPr(N(g') = j)+ D (2n'—1+2))Pr(N(s') = n'+j)
o< j<n' j=1

n' n .
<> @n-1+3+ > @n-1+1+2j)s 12 o)
j=1 j=1

—0(n2e2) (4.15)
The interval (7 — &', ) can also be treated in exactly the same way to give the same result. Now we can use delicate
result due to Wilkins [12] which states that EN (O, z) = n/\/§+0(1).From this and (4.13), (4.15) and since
& =¢&', we obtain
var{N(0,7)} = E{N(0,&) + N(¢', 7 — ') + N(z — &', 7)}% — {EN (0, 7)}2
—n2/3+0(n2e2+n/en2e’) — i3 +0)
O(n?s2+n/&'+n2s) (4.16)

Use has been made of the fact that EN(&',7—¢&") ~ EN(0,&') =O(neg'), see [5,page 556] and therefore

E[N(0,&")N(&', 7 —&")]=nO(N(O,¢&")) =O(n2,g')and also from (4.15),
EN 2(0,8') ~EN 2(72'—8',72') = O(nz,g'2 ).Finally from (4.16) and since &'= n_ll2 , We have the proof of
Theorem 3.
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