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ABSTRACT 

The asymptotic estimates of the expected number of real zeros of the polynomial 

 ngggT ncos......2coscos)( 21   where gj(j=1,2,…..n) is a sequence of independent normally 

distributed random variables is such a number. To achieve the result we first present a general formula for the covariance of the 

number of real zeros of any normal process, e(t), occurring in any two disjoint intervals. A formula for the variance of the number of 

real zeros of e(t) follows from this result.  
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Keywords and phrases: Level crossings, Trigonometric functions Independent, identically distributed random 

variables, random algebraic polynomial, random algebraic equation, real roots, domain of attraction of the normal 

law, slowly varying function. 

  

1. 1. INTRODUCTION 

Let (1.1),cos)(),()(
1

0 



n

j

j jgTT   where )(),.......(),( 21  nggg  is a sequence of 

independent random variables defined on a probability space ( Pr),,(  , each normally distributed with mean zero 

and variance one. Much has been written concerning )2,0( KN , the number of crossings of a fixed level K by 

T(θ), in the interval (0,2 ) . From the work of Dunnage (2) we know that, for all sufficiently large n, the mathematical 

expectation of )2,0()2,0(0  NN   is asymptotic to 3/2n . In [3] and [5] we show that this asymptotic 

number of crossings remains invariant for any .n as 0/nKsuch that  2  nKK However, less 

information is known about the variance of )2,0( N . The only attempt so far is ….where an (fairly large) upper 

bound is obtained. Indeed this could be justified since the problem with finding the variance consists of different levels 

of difficulties ……with finding the mean. The degree of difficulty with this challenging problem is reflected in the 

delicate work of Maslova [8] and Sambandham et al., [7] with above obtained the variance of N for the case of random 

algebraic polynomial ;0
n
j

j
jxg  a case involving analysis that is usually easier to handle. Qualls [9] also studied 

the variance of the number of real roots of a random trigonometric polynomial. However, he studied a different type of 
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polynomial  jbja j
n
j j sincos0   which has the property of being stationary and for which a special 

theorem has been developed by Cramer and Leadbetter [1]. 

 

Here we look at the random trigonometric polynomial (1.1) as a non-stationary random process. First we are seeking to 

generalize Cramer and Leadbetter’s [1] works concerning fractional moments which are mainly for the stationary case. 

To evaluate the variance specially, and some other applications generally it is important to consider the covariance of 

the number of real zeros of )(t  in any two disjoint intervals. To this end, let )(t  be a (non-stationary) real valued 

separable normal process possessing continuous sample paths, with probability one, such that for any 21    the 

joint normal process )('  )('),(),( 2121  and  is non singular. Let (a,b) and (c,d) be any disjoint 

intervals on which )(t  is defined. The following theorem and the formula for the mean number of zero crossings [1, 

page 85] obtain the covariance of N(a,b) and N(c,d). 

 

Theorem 1. For any two disjoint intervals, (a,b) and (c,d) on which the process )(' 1  is defined, we have  

      









d

c

b

a

ddxdydyxpxydcNbaNE 2121 ,,0,0),(),(   

Where for ),,,(.p , c and 212121 yxxxdba    denotes the four dimensional 

density function of  ).('),('),(),( 2121       

 

A modification of the proof of Theorem 1 will yield the following theorem which, in reality, is only a corollary of 

Theorem 1.  

Theorem 2: For ),,,(.p 2121 yxxx   defined as in Theorem 1 we have  

    









d

c

b

a

ddxdydyxpxybaEN 2121
2 ,,0,0),(   

By applying Theorem 2 to the random trigonometric polynomial (1.1) we will be able to find an upper limit for the 

variance of its number of zeros. This becomes possible by using a surprising and nontrivial result due to Wilkins [12] 

which reduces the error term involved for )2,0( EN  to 0(1). We conclude by proving the following. 

 

Theorem 3. If the coefficients gj(w), j=1,2,…..n in (1.1) be a sequence of independent random variables defined on 

probability space Pr),,(  , each normally distributed with mean zero and variance one, then for all sufficiently 

large n the variance of the number of real zeros of T(θ) satisfies  

  )(),0(var 2/3nON   
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2. THE COVARIANCE OF THE NUMBER OF CROSSINGS 

To obtain the result for the covariance, we shall carry through the analysis for the number of upcrossings, Nu. Indeed, 

the analysis for the number of down crossings would be similar and therefore, the result for the total number of 

crossings will follow. In order to find  ),(),( dcNbaNE uu   we require to refine and extend the proof 

presented by Cramer and Leadbetter [1, page 205). However, our proof follow their method and in the following, we 

highlight the generalization required to obtain our result. Let akaba m
k  2)(  and similarly 

 2)( clcdb m
j  

for 1-20,1,2,....lk, m and we define the random variable Xk,m and Xlm as  



 




otherwise

aaif
mXk

kk

0

)(0)(1
,

1
 

And 

(2.1)                   
0

)(0)(1 1



 




otherwise

bbif
Xlm

ll 
 

In the following we show that  

 









12

0

12

0

,,,

m m

l k
m mXlmXkY  

tends to m as ),(),( dcNbaN uu  with probability one. See also {1,page 287}. We first note that 

 ),(),( dcNbaNE uu  is finite and therefore  ),(),( dcNbaN uu  is finite with probability one. Let v 

and r be the number of upcrossings of )(t in (a,b) and (c,d), respectively, and write t1,t2,…..tv and t’1, t’2…t’r for the 

points of upcrossings of zero by )(t , there can be found two sub intervals for each Is,m and Js’m such that )(t  in 

one is strictly positive and in the other, it is strictly negative. Thus it is apparent that Ym will count each of tsts’. That is, 

vrY m , for all sufficiently large m. On the other hand, if 

0)()( and 0)()( 11   ttkk bbba  then  )(t  must have a zero in 

),( and ),( 11  llkk bbaa  and hence vrY m  and hence ),(),( dcNbaNY uum  as m , 

with probability one. Now from (2.1) we can see at once that  

(2.2)                          )1,,Pr(

)1,,Pr()(

12

0

12

0

12

0

12

0

 

 




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
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We write k for the random variable     kk
m aa  12  and similarly 1'  for 

    kk
m bb  12 , then we have  

 )1,,Pr(  mXmX lk  

= )2)(0 and ,2)(0Pr( l
m

lk
m

k ba     

=    


 

0 0

2

0

2

0

2121 (2.3)                   ),,,(,,

xm ym

dxdydzdzyxzzlkPm  

For k,l, (z1,z2,x,y) denotes the four dimensional normal density function for k  and k' . A simple calculation shows 

see [6] or [1 page 207], that if 1  and 2 are the fixed interval (a,b) and (c,d), respectively and km and lm are such 

that 
11 


mm kk aa  and 

12 


mm ll bb  for  each m, then all members of the covariance matrix of pm,k,l 

(z1,z2,x,y) will tend to the corresponding members of the covariance matrix of 2,
1
p  (z1,z2,x,y). This co-variance 

matrix is, indeed, nonsingular. Now let 
21

2r and 2 z
m

z
mt  then from (2.2) and (2.3) we have  

    












12

0 0 0 0 0

12

0

2     ),,22(,,2)(

m m

l

x y
mm

k

m
m dtdrdxdyyxrtlkPmYE  

     



b

a

d

c

mm
x y

m ddtdrdxdydyxrt (2.4)      ),,22(,,

0 0

21

0 0

21   

in which 21,, m   ),,,( yxrt ),,,(,, yxrtlkPm  for 11  kk aa   and 12  ll bb   . It 

follows, similar to [1, page 206], that m  

),,0,0(),,22(,, 2121 yxpyxrt mm
m   

Which together with dominated convergence 

proves Theorem 1.  

 

3. THE VARIANCE OF THE NUMBER OF REAL ZEROS 

It will be convenient to evaluate the EN(N-1) rather than the variance itself since N(N-1) can be expressed much more 

simply. The proof is similar to that established above for covariance, therefore we only point out the generalization 

required to obtain the result. To avoid degeneration of the joint normal density. ),,,(, 2121 yxzzp  , we should 

omit those zeros in the squares of side 2
-m

 obtained from equal points in the axes (and therefore to evaluate EN(N-1)). 

To this and for any g=(g1,g2) lying in the unit square and c>0, let Ame denote the set of all points g in the unit square that 
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for all s belonging to the squares of side 2
-m

 set containing g we have  21 ss . Let m  denote the 

characteristic function of the set m . Finally, similar to the covariance case, let 

                   
0

)(0)(1 1
,



 




otherwise

aaif
X

kk
mk


 

for k=0,1,2,….2
m
-1, where .2)( akaba m

k  
 Now let 

 









12

0

12

),0(
,, (3.1)               )2,2(

m m

k kll

mm
mmlmkm lkXXM    

Similar to [1,page 205] we show that Mme is a non decreasing function of m for any fixed e. It is obvious that Mme is a 

non decreasing function of e for fixed to m, and then by two applications of monotone convergence it would be justified 

to change the order of limits in .limlimlim 0  mm   To this end, we note that each term of the sums 

of mM corresponds to a square of side 2
-m

. For fixed 0 , the typical term is one if both of the followings 

statements are satisfied; (i) every point s=(s1,s2) in the square is such that  21 ss  and (ii) Xk,m=Xl,m=1. When 

m is increase by one unit, the square is divided into four subsquares, in each of which property (i) still holds. 

Correspondingly, the typical term of sum is divided into four terms, formed by replacing m by m+1 and each k or l by 

2k and 2l, for ak+1 and al+1. Since Xk,m=Xl,m=1 we must, with probability one, have at least one of these four terms equal 

one. Hence Mme is a non decreasing function of m.  

 In the following, we show that       ).1(limlim 0  uum NNs  

We first note that if the typical term in the sum of mM  is nonzero  it follows that  21 ss , since it is 

impossible to have )(0)( and )(0)( 211   kkkk aaaa  . Therefore, the 

characteristic function appearing in the formula for  mM  in (3.1) is one and hence 

 







 

12

0

12

),0(
,,0 (3.2)               lim

m m

k kll
mlmkm XXM   

(3.2) is clearly in the form of Ym defined in Section 2 except that the summations in (3.2) cover all the k and l such that 

lk  . Hence from (3.2), we can write 

)1(limlim 0  uumm NNM   

Therefore the same pattern as for the covariance case yields 

  1),(),( baNbaNE uu  
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  




0 0

212

)(
0 (3.3)      ),,0,0(,,

1lim 


 ddxdydyxpxy

D

 

where )(D  denotes the domain in the two dimensional space with coordinates 21,  such that ba  21,  

and   21 . Now notice that for 021   the ),,0,0(. 21 yxp   degenerates to just 

),0( xp , the two dimensional joint density function of )( .and )('  . Hence from (3.3) we have  

  1),(),( baNbaNE uu =

    
 b

a

b

a

b

a

dxdxpxddxdydyxpxy

0 00

21      ),0(,-),,0,0(,,
21

   

Now since  
b

a

dxdxpx

0

),0(,   is ),( baENu  the result of Theorem 2 follows.  

 

4. RANDOM TRIGONOMETRIC POLYNOMIAL 

To evaluate the variance of the number of real roots of (1.1) in the interval ( ),0  we use Theorem 2 to consider the 

interval  ','   . The variance for the intervals and  ','    are obtained using an application of 

Jenson’s theorem [10, page 332] or [11, page 125]. We chose 
2/1'  n  which as we will see later, yields the 

smallest possible error term. First, for any   and 21  in  ','    such that   21 where 

2/1'  n , we evaluate the joint density function of the random variable 

)(' and )('),(),( 2121  TTTT . Since for any   we have  

  



n

j

nj
1

2/1)2/sin(/)2/1(sincos   

and also since for the above choice of )'(2 , and 2121    we can show         

 

   

   

(4.1)                           )'/1()/1(

4/
22/) (sin/) )(2/1(sin

2/) -(sin/) - )(2/1(sin

cosj cos)T( ),(cov),(

2121

2121

1
212121


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



OO

n

n

jTA
n

j

















 


 

Similarly, we can obtain the following two estimates 
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 

  (4.2)               )''//(,)/(

cosj sin)T( ),(cov),(
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211

1
212121
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nnOA

jjTC
n

j  
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 

  (4.3)    )''////(,)/(

sinj sin)T( ),(cov),(

32222
212

1
212121


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

 

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jjTB
n

j  Also in the lemma in 

[3,page 1405] we obtain 

)''/'/(6/

))0('var(),'(2/))0(var(

3223

1
1

1






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nnOn
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and  

  )''/()()(cov 2
21

  nOTT  

These together with (4.1)-(4.3) give the covariance matrix for the joint density function 

)('  )('),(),( 2121  TandTTT as 

(4.4)   

)'/2(6/3)2,1()2,2()1,2(

)2,1()'/2(6/3)2,1()1,1(
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
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This covariance matrix for all   2,10,4n  such that 21   is positive definite. Hence 0  and, if 

ij
is cofactor of the (ij)th element of  , then   

34 43
 and 

44
0,

33
0 . From [1,page 

26] we have  

),,0,0(. 21 yxp   

=    (4.5)    2/
433444

2
33

2exp
2/11)24(





 

  xyyx  

Now let q=     .
2/1

44
/s and 

2/1

33
/ yx      Then from (4.5) we can write  

dydxyxpyx  ),,0,0(2.1,  





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  (4.6)       2/)222(exp,
44
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33

1)24( dsdqpqssqsq 

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
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   

where     2/1

44332/
4334    and 120  p . The value of the integral in (4.6) can be 

obtained by a similar method to [1, page 211]. Let squ 2/1)21( vand 2/1)21(    then we have  

         
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2/)222(exp dsdqpqssqI  
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where  cos  . Use has been made of the fact that (see for example, [1, page 27] 

  dvdupuvvu  
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)21(2/)222(exp 
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



0

2/1)21(1)(2/11/2-)2-(1 dxx  

Therefore from (4.7) by differentiation we can obtain  

 

(4.8)                       ).cot-(12csc)-(dI)/(d

   

0

2/)222(exp

 

 



  dsdqpqssqqs
 

(4.8) we can easily show that  

 

   cot12csc

   

0

2/)222(exp



 



  dsdqpqssqqs
 

Which together with (4.8) evaluates the integral in (4.6) as  
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 

   (4.9)                                                  cot2/12csc4

   2/)222(exp

 









  dsdqpqssqqs
 

Now from (4.4) we can show 

(4.10)                             
44 33

)'/4(24/5  nOn  

and  

(4.11)                             
34 43

)'/4(  nO  

Also from (4.10) and (4.11) and with the above choice from (4.9), we can obtain 

        n as 0)'/1(
2/1

34 33
2/

34 33
 nO  

Therefore 2/  for all sufficiently large n and hence from (4.9), we can see  

 

(4.12)                                               )'/1(4

   2/)222(exp

nO

dsdqpqssqqs











   

Also from (4.1)-(4.4) we can write  

 2)}1'(6/3{2)}1'(2/{   OnOn  

Therefore from this (4.6) and (4.12) the integrand that appears in (3.3) is asymptotically independent of 2 and 1   

and since by the definition of D(e), the area of the integration is )'(22)'2(2)'2(   O  

we have  

   )''/(3/21)','()','(  nnnOnNNE               (4.13) 

We now denote the mathematical expectation of N
2
 in the interval (0,e). Similar to [2] or [3, page 1407] we apply 

Jensen’s theorem on a random integral function of the complex variable z,  






n

j

jzwjgwzT

1

cos)(),(  

Let N(r) denote the number of real zeros of  T(z,w) in z<r. For any integer j from [3, page 1408] we have  

  2/'3)2/'22/exp(2/')/2('3)'(Pr jjnjjnjnN       (4.14) 

Let  '3' nn   be the smallest integer greater than or equal to '3 n  then since nN 2)'(  is a non negative integer, 

from (4.14) and by dominated convergence, for efficiently large n we have  






0

))'(Pr()12()'(2

j

jNjEN   
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(4.15)                                                           )2'2(

1

)'('2/)211'2(

'

1

3)1'2(

1

)')'(Pr()21'2(

'0

))'(Pr()12(







nO

n

j

nOnjjn

n

j

n

n

j

jnNjn

nj

jNj























 

The interval ),'(    can also be treated in exactly the same way to give the same result. Now we can use delicate 

result due to Wilkins [12] which states that ).1(2/),0( OnEN  From this and (4.13), (4.15) and since 

,'   we obtain 

     

 
(4.16)                                            )'2'/2'2(

2
)1(3/)'2'/2'2(3/2

2),0(2),'()','()',0(),0(var







nnnO

OnnnnOn

ENNNNEN







 

Use has been made of the fact that ),'()',0(~)','(  nOENEN   see [5,page 556] and therefore 

)',2())',0(()]','()',0([  nONnONNE  and also from (4.15),  

).2',2(),'(2~)',0(2  nOENEN  Finally from (4.16) and since 
2/1'  n , we have the proof of 

Theorem 3.  
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