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ABSTRACT

This paper provides asymptotic estimates strong result for real zeros of random algebraic polynomial for the
expected number of real zeros of a random algebraic polynomial. The strong result for the lower bound was
obtained in the general case by their lower bound was

ulogn

k
Iog{t” log n}

K
Which is obtained by taking &, = ,u/log{t” log n} in our present result.

n
This result is better than that of Dunnage since our constant is (112).
Times his constant and our error term is smaller . the proof is based on the convergence of an integral of
which an asymptotic estimation is obtained .
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1. INTRODUCTION
We shall suppose that &, (a))s real-valued random variables defined on the probability space ({2 , m, P) .The random
events to be considered in the proof correspond to P-measurable subsets of this space. The probability that an event E

n
occurs will be denoted by P(E). Let N, be the number of real roots of f (X, a))z (@)X
v=0

In Mishra, Nayak and Pattnayak, S. [5] we have shown that for N >n,, N isatleast &, logn outside an exceptional
set of measure at most % logn )where {&, } is any sequence tending to zero such that gf logn tends to
No 0

infinity as n tends to infinity. We have assumed that the&,’s have a common characteristics function exp

(— C|t|a)where a > 1and C is a positive constant. In the present work we have proved the same result in the general

case.

We assume that the &, ’s are any random variables with finite variance and third absolute moment. Our previous result

holds in the case of a special characteristic function which has infinite variance (1 <a< 2). The strong result for the
lower bound was obtained in the general case by Samal and Mishra [4]. Their lower bound was
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ulogn

k
Iog{ " log n}

Which is obtained by taking &, = /Iog{ “log n} in our present result,

I'l

Where K

We claim that our strong result for the lower bound in the general case is the best estimation done so far.
We shall use [x] to denote the greatest integer not exceeding X.

o L, have the same meaning as in our present work.

2. THEOREM 1. Let f X a) Zf X be a polynomial of degree n whose coefficients are independent random

variables with expectation zero. Let 0' be the variance and 1'3 be the third absolute moment of &, (a)).Take

{ }to be a sequence tending to zero such that & logn tends to infinity as n tends to infinity. Let t, = min o, ,

0<v<n

k, =max o, and p, = max z,.Then there exists an integer N, and a set A( )of measure at most
0<v<n 0<v<n
#je,, logn,
such that, for N > Ny and all @ not belonging to A(a)) the equations f(X,a)) = Ohave at least &, lognreal roots,
ted Tim P Ko e fini
provided lim —"and lim - are finite.
Ky t,

2.1. Preliminary lemmas.
LEMMA 1. Suppose X,, X,,...X,are independent random variables with expectation zero, and that AV2 is the

variance and B? is the third absolute moment of X , .

Let
3

B, if A, #0

2

1<v<n

:Zn: A, A= 0 ifA =A,=max(2,)

Also let F, (t) be the distribution function of —z X, and
Hq v

0~ o2

Then sup | F, (t) — #(t) I= Z(A%nj

This result is due to Esseen [2] and Berry [1]

LEEMA 2. Let 17,,7m,,M5,...  be a sequence of independent random variables identically distributed with V( i)<1

for all i. Then, for each & >0
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p{fgkg | %g{m —E(,)} = «9} <

g%k,

Where D is a positive constant. This form of the strong law of large number is a consequence of the Hajek-Renyi
inequality (see [3]).

t, C,
2.2 PROOF OF THE THEOREM. Take [, = ——€exp =
kn - logn

Where C; is a constant to be chosen later.
Let A and B be constants such that 0<B<1 and A >]. Let

{2,6’( j ABe +1. 2.1)

2 2
So [T]ﬂﬂ\ﬂ ut—")ﬁf-

We define

¢(X) _ X[Iog xJ+x

Let k be the integer determined by

+ <n< + : (2.2)
8Kk + 7)M &7 8k +11)M 3+t
Obviously

IO% <k< % (2.3)

Iog(”ﬂ] Iog(”ﬁnj

tn tn
which implies
Iogn<k<’u2( logn)’.

1

We consider f(x,0)=U, (0)+R, (@)
be!
at the points Xy =91— (2.4)
4m +M A

for m= [ [+1[6% |+ 2...k, where
)=24 (), mw{Z +Zj

2

the index v ranging from  #(4m—1M ™ +1 to $(4m+3)M 2™ inz ,from 0 to #(4m—1)M ™ i
1

_and from #(4m+3M ™2 +1 to n in .
Z ¢( ) n
3

i)

Let
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We define the events E_ as the sets of @ for which U, (a)) >V, and U 2m+1(a)) <-V,.,, and the events F_ as

the sets of @ for which U, (a))< -V, and U2m+1(a))>V Obviously the sets of &,'sin U, (a)) and the

2m+1-
setsof &,'S in U2m+l(a)) are disjoint. Thus U, (a)) and U2m+l(a)) are independent random variables.
Let S, S,, bethe sets of @ in which respectivelyU (a)) >V, U, (a)) <-V,.

Hence E,, U Fy = (S5 A Somea ) (Som M Si).

2m+1

Since the two sets within the braces on the right hand side are disjoint and since
U,, (a)) and U, , (a)) are independent random variables,

P(Ey  Fo) = P(S:0 P(Sana )+ P(S20 P (S5m0 )

If o is the variance of U, (a)) then o° =4V, .

Uzm(a’)_

o

Soo=2V,, . Let F,, (t) be the distribution function of

Hence P{U 2m (w) <V } = P{U 2m (a))/d < _%} =F,, (_ %)
Here we shall apply Lemma 1.

3 3,3V A2 2,2
In our case B, =7, %m A, =0, X5 -

v
3
T v
So A, =V X5,
v (%\/2] 2m
3 3
A, =max| v/, x;msp—;
0<v<n o, tn

and U, =0 =2V

2m
Therefore
P, 1
F - <——
Up | Fon (t) - 40k -
Hence
pa 1
P(San )= Fon(-3)2 91~ [Fon(-3) - #(-3) > 9l 1)1
n 2m
Similarly the other probabilities can be calculated.
Therefore
PE, UF, )2 1-gl3)- P gl 2) P dg)- Pt g P
" " ’ tr3V2m ’ tr?\/2m+1 ’ tr?VZm ’ tr$V2m+l
It can be easily shown as in [5] that
vzt (4m+1)M ‘”“(Iy)e-1 2.5
>y Y " VA (25)

when n is large.
So
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m

2
V2 Z”(Sm +1ME"(B/A)™

The least value of mis [k/2] +1. Hence V,, >t A

where A, — o0 asn —>oo,since M, >1 and8m+1> sk > p's, logn.

Since Iim(p”t ) is finite, it follows that
n

nN—oo

Vo 10 A,
tends to zero as n tends to infinity.
Therefore P(Em UF )ls greater than a quantity which tends to 2¢( ){1 ¢(%)} as n tends to infinity.

pr _ Pl

Denote this last expression by O .

LEMMA 3. There is a set €2 of measure at most

2
1 16Ae( k
m2—ﬂ2+Te(t_nJ exp{—(4m +1)2Mn2}

n
such that if @ ¢ Q. and N >N, then
R, (@) <V,

for m = [%J+1, [%J+ 2,..k.

PROOF.

By Tchebycheff’s inequality, we have

e

Proceeding as in Lemma 2.2 of [5], we now get that the above probability does not exceed

2
16%[':—”} exp {— (4m+1)° Mf}

n

X

>v} nfz

3

Again, by using the same inequality

PI s @)

Thus if @ & Q. where

v 2v % 1
>mg, (ZG j <m2ﬁn2.
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2
1 168e(K,
P(Qm)<m2—ﬁr]2+?(?} exp{-(4m+1P M2}

we have
%
Rufe) <3V, s, Lo |
2
Now , by using (2.1) and (2.5) and following the procedure of Lemma 2.3 of [5], we have
2,2 %
Vv
mﬂn(zo-v Xm j <%Vm
2

We have shown earlier that

P(E, UF, )=6, >5>0.
Let 77,, be a random variable such that it takes value 1 on E_ U F_ and zero else where. In other words

1 with probability J,,

U
0 with probability 1—0,,

The 7,,’s are thus independent random variables with E(ﬂm ) =0,, and V(?]m ) =5, -6 <.
Let p,, be defined as follows:

0if Ry (@) <V, and |Ryp (@) <V

2m+1 2m+1

Pm =
1 otherwise.

Let em =T — M Pm-

k
The conclusion of section 2.4 of [5] gives that the number of roots in (XZmO , sz) must exceed Zﬁm
m=mq

Where m, = [%k]+1.

2.3.  Now we appeal to Lemma 2.

We have

30, m»{s

m=mj

>l - E(nm))(+ Zk:pm -

m=mj
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Let A(a)) be the set of @ for which

i{@n —E(n,, ))( > &,

m=mj

sup
k—mg+1>k, K — m, +1

B(a)) be the set of @ for which

i{nm - E(nm)‘( >4

m=mj

sup —m
k-mo+12k, K — m, +1

and C(a)) be the set of @ for which

1 k
Su _— >1g.
p +1 me 2

k—my+12k, K — M mome

E(pm)z P{QRZm‘ Z\/Zm )U QR2m+1| Z\/2m+1)}S PqR2m| szm)+ I:)(JRZm+1| ZV2m+1)'

By Lemma 3,
2 2
1 16Ae( k, 1 16Ae( k,
PQR2m| ZVZm)< pr =5 (E] exp{— (8m+1)° M§}< mz—ﬁ’anr?(Ej exp(_mZMrf)
Similarly
2
1 16Ae( k,
P(Ramoa] = Vo) < g +T(E] exp(— m*M f)
Hence by using (2.1), we have
E(p, )< mfjﬂz +,u’(lt(—"jexp(— m2M§)< ,u”/(mzﬂnz)< 1 lm?,
Therefore
1 k
E rr/ 2
k—m, +1m§0 (pm)< MMy
and so
1 K 2u" 1
PiClo);< P{—— n > rer<—— —.
{ ( )} kmonrkko {k —my +1m—2mop ? } kmOZszO mg
Again by Lemma 2, we have
4D
P{B(w)} < .
Since
Kk 1 Kk 1 k
_— 6 —E < _— -E _—
S Ky 212 O E O W S, K g 422 T Bl W A s D3

it follows that
Alw) c B(w)uC(w).
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Hence calculation as in [5] gives

ILI, /,[”
PA —<—
)< Ko &, logn,

Thus if
¢ Ao)
1 k 1 k
= N9 >s——  NE _
k—m0+1n§0 m>k—m0+1m§0 (1)~ ¢

for all k such that K —m, +1>K,.

So N, >1(—ek>1(5-&)L g, logn

e

for all k such that K —m, +1> K, or in other words, for alln > n, .

Now the theorem follows by taking C, = 1 227 (5 — g).
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