(1, 2) - Triple Domination in Graphs

P.Murugaiyan¹, Dr.Paul Dhayabaran² and P.Padma³

 $^{1,2} Department\ of\ Mathematics,\ Bishop\ Heber\ College,\ Trichy,\ Tamilnadu,\ India.\ Email:\ npmuru@gmail.com,\ dpdhaya@yahoo.com,\ dpdhay$

³Department of Mathematics, PRIST University, Thanjavur, Tamilnadu, India. Email: padmaprithivirajan@gmail.com

Article Received: 24 July 2017

Article Accepted: 17 August 2017

Article Published: 26 August 2017

ABSTRACT

Berge [1] and Ore [7] were the first to define dominating sets. A new type of dominating set, (1, 2) – dominating set is introduced by Steve Hedetniemi and Sandee Hedetniemi [8]. In this paper, we introduced the (1, 2) – triple domination number and also we discussed about its properties.

Keywords: (1, 2) - triple domination number.

1. Introduction

Dominating queens is the origin of the study of dominating set in graphs. Berge [1] and Ore [7] were the first to define dominating sets. A new type of dominating set, (1, 2) - dominating set is introduced by Steve Hedetniemi and Sandee Hedetniemi [8].

In this paper, we have introduced the (1, 2) - triple domination number and also we discussed about its properties.

2. PRELIMINARIES

Definition 2.1: A graph is said to be complete if each of its vertices is adjacent to every other vertex.

Definition 2.2: A graph is said to be regular if each of its vertices has the same degree.

Definition 2.3: A graph is said to be cubic graph if each of its vertices is of degree three.

Definition 2.4: A bipartite graph is a graph in which vertices can be divided into two disjoint sets A and B such that every edge connects a vertex in A to one in B.

Definition 2.5: A (1, 2) – dominating set in a graph G = (V,E) is a set S having the property that for every vertex v in V – S there is atleast one vertex in S at distance 1 from v and a second vertex in S at distance atmost 2 from v.

Definition 2.6: The order of the smallest (1,2)- dominating set of G is called the (1,2) – domination number of G and we denote it by γ (1,2).

Remark 2.1: From the definition of 2.1, we see that a (1,2) – dominating set contains at least 2 vertices, (1,2) – domination number of a graph will be always ≥ 2 and (1,2) – dominating sets occur in graphs of order at least 3.

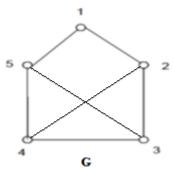
Definition 2.7: For each vertex x in a graph G, we introduce a new vertex x' and join x and x' by an edge. The resulting graph is called the **corona** of G.

3. (1, 2) – TRIPLE DOMINATING SET

Definition 3.1: A (1, 2) – triple dominating set in a graph G = (V, E) is a set S having the property that for every vertex v in V - S there is at least three vertex in S at distance 1 from v and a second vertex in S at distance atmost 2 from v.

Definition 3.2: The order of the smallest (1, 2) - triple dominating set of G is called the (1, 2) - triple domination number of G and we denote it by $\gamma_{3d(1,2)}$. From the definition of (1,2) - triple dominating sets, we see that a (1, 2) - triple dominating set contains at least 2 vertices, (1,2) - triple domination number of a graph will be always ≥ 3 and (1, 2) - triple dominating sets occur in graphs of order at least 3.

Example 3.1: Consider the graph



In G, $\{1, 4, 3, 2\}$ is a (1, 2) – triple dominating set.

Definition 3.3: A dominating set S is an independent triple dominating set if no two vertices in S are adjacent, that is, S is an independent set. The independent triple domination number $i_3(G)$ of a graph G is the minimum cardinality of an independent triple dominating set. Thus $i_3(G) = \min\{ \mid S \mid \text{dominates and } \Delta(S) \}$.

Definition 3.4: A triple dominating set S is called a perfect triple dominating set if for every vertex , The perfect triple domination number is denoted as $u \in V$, $|N[u] \cap S| = 1$. The perfect triple domination number is denoted as $\gamma_{pt}(G)$.

Definition 3.5: A triple dominating set S is called an efficient triple dominating set if for every vertex, $u \in V - S$,

Volume 1, Issue 7, Pages 179-182, August 2017

 $|N(u) \cap S| = 1$. Equivalently, a triple dominating set is efficient if the distance between any two vertices in S is at least three, that is, S is a packing. We note that, if a graph has an efficient triple dominating set, then all efficient triple dominating sets in G have the same cardinality namely $\gamma(G)$.

Theorem 3.1: All (1, 2) – triple dominating sets are dominating sets.

Proof: The result is trivial from the definition of (1, 2) – triple dominating sets.

But the converse need not be true.

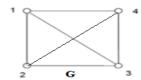
Example 3.2: In example 3.1, $\{1,4\}$ is a dominating set. But it is not a (1,2) – dominating set. $\{2,3,4\}$ is a (1,2) – dominating set. $\{1,4,3\}$ is a (1,2) – triple dominating set and it is a dominating set also.

3.2. (1, 2) – *Triple Domination In Complete Graphs Theorem 3.2.1*: (1, 2) – triple domination is not possible in complete graphs.

Proof: In a complete graph, each vertex is adjacent to every other vertices. So we cannot find a (1,2) – triple dominating set. No vertex can be found at a distance atmost 2 from any other vertex. Let G be a complete graph with n vertices. Then it will have nC2 edges and each vertex is of degree n-1. The minimum number of edges to be deleted so as to become the resulting graph (1,2) – triple dominating is n-2. If we delete n-2 edges from a complete graph, then in the resulting graph, we can find a (1,2) – triple dominating set.

Lemma 3.2.1: If a graph G with n vertices, has a vertex of degree n-1, we cannot find a (1, 2) – dominating set.

Example 3.2.1: In this graph, we cannot find a (1, 2) – triple dominating set since each vertex is adjacent to all other vertices.

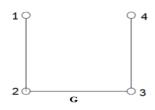


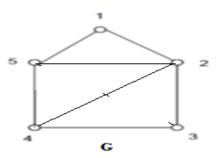
In graph G , we cannot find a (1,2) – triple dominating set since each vertex is adjacent to all other vertices.

3.3. Relation Between Domination Number And (1, 2) – Triple Domination Number

In this section we consider different types of graphs and find out their domination number , (1, 2) - domination number and (1, 2) - triple domination number and check the relation between them.

Example 3.3:



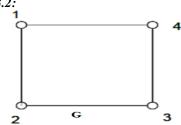


In G, $\{1,3\}$, $\{1,4\}$, $\{2,4\}$, $\{2,3\}$ are all dominating sets. γ (G) = 2

$$\{1, 4\}$$
 is a $(1, 2)$ – dominating set.
 $\gamma(1,2) = 2$.
 $\{1, 3, 4\}$ is a $(1, 2)$ – triple dominating set.

$$\gamma_{d(1,2)} = 3$$
 $\therefore \gamma(1,2) < \gamma_{d(1,2)}$
 $\gamma < \gamma_{d(1,2)}$

Example 3.3.2:

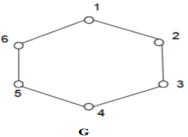


In G, $\{1,3\}, \{1,4\}, \{2,4\}, \{2,3\}$ are all dominating sets. γ (G) = 2. $\{2,3\}$ is a (1,2) – dominating set.

 $\{2, 3\}$ is a (1, 2) – dominating set. $\gamma(1,2) = 2$. $\{2, 3, 4\}$ is a (1, 2) – triple dominating set.

 $\gamma_{d(1,2)} = 3$ $\therefore \gamma(1,2) < \gamma_{d(1,2)}$ $\gamma < \gamma_{d(1,2)}$

Example 3.3.3:



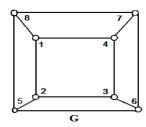
In G , $\{1, 3, 5\}$, $\{2, 4, 6\}$ are dominating sets. γ (G) = 3. $\{1, 4, 6\}$ is a (1, 2) – dominating set.

 $\gamma(1,2) = 3$. {1, 3, 4, 6} is a (1, 2) – triple dominating set.

 $\gamma_{d(1,2)} = 4$ $\therefore \gamma(1,2) < \gamma_{d(1,2)}$ $\gamma < \gamma_{d(1,2)}$

Volume 1, Issue 7, Pages 179-182, August 2017

Example 3.3.4:

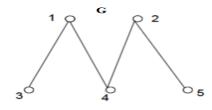


In G,

{1,2,3,4} , {5,6,7,8} are dominating.
$$\gamma (G) = 4 \ .$$
 {1,2,3,4} is a (1,2) – dominating set.
$$\gamma (1,2) = 3 \ .$$
 { 1, 3, 5, 6, 7, 8 } is a (1,2) – triple dominating set.

$$\gamma_{d(1,2)} = 6$$
 $\therefore \gamma(1,2) < \gamma_{d(1,2)}$
 $\gamma < \gamma_{d(1,2)}$

Example 3.3.5: Consider the bipartite graph G



In G.

 $\{1,2\}$ is a dominating set.

 γ (G) = 2.

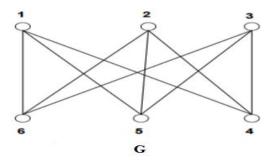
 $\{1,4,5\}$ is a (1,2) – dominating set.

 $\gamma(1,2) = 3$.

 $\{2,3,4,5\}$ is a (1,2) – triple dominating set.

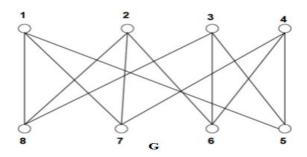
$$\gamma_{d(1,2)} = 4$$
 $\therefore \gamma(1,2) < \gamma_{d(1,2)}$
 $\gamma < \gamma_{d(1,2)}$

Example 3.3.6: Consider the cubic bipartite graphs G,



{ 1, 5 } , { 2, 6 } is a dominating set.

$$\gamma$$
 (G) = 2.
{ 1, 5 } is a (1,2) – dominating set.
 γ (1,2) = 2.
{ 2, 4, 6, 5 } is a (1, 2) – triple dominating set.
 $\gamma_{d(1,2)} = 4$
 $\therefore \gamma(1,2) < \gamma_{d(1,2)}$.
 $\gamma < \gamma_{d(1,2)}$.



In G,

 $\{1, 6\}$ is a dominating set. $\gamma(G) = 2$. $\{1, 6\}$ is a (1,2) - dominating set. $\gamma(1,2) = 2$.

 $\{1, 3, 6, 7, 8\}$ is a (1, 2) - triple dominating set.

$$\gamma_{d(1,2)} = 5$$
 $\therefore \gamma(1,2) < \gamma_{d(1,2)}$
 $\gamma < \gamma_{d(1,2)}$

Remark 3.3.1: In all the above examples, we conclude the following,

- ♦ domination number is less than (1, 2) triple domination number.
- ♦ (1, 2) domination number is less than (1, 2) triple domination number.

From the above examples we have the following theorem.

Theorem 3.3.1: In a graph G, domination number is less than (1, 2) – triple domination number.

Proof: Let G be a graph and D be its triple dominating set. Then every vertex in V-D is adjacent to a vertex in D. That is, in D, for every vertex u, there is a 2 vertex which is at distance 1 from u. But it is not necessary that there is a second vertex at distance atmost 2 from u. So if we find a (1, 2) – dominating set, it will contain more vertices or atleast equal number of vertices than the dominating set. So the domination number is less than (1, 2) – domination number.

Theorem 3.3.2: In a graph G, (1, 2) – domination number is less than or equal to (1, 2) – triple domination number.

Proof: Similar to theorem 3.3.1.

Theorem 3.3.3: If G is a 2-regular graph, then the (1, 2) - triple domination number of the corona of G is equal to the number of vertices of G.

Proof: Let G be a 2- regular graph. Then each of its vertices will be of degree 2. In the corona of G, for each vertex x, we introduce a new vertex and join them. Consequently, an edge is added to each of its vertices. By the definition of (1,2) – triple dominating set each vertex v in V – S has atleast two vertex in S at distance 1 from v and a second vertex in S at distance atmost 2 from v. Hence (1,2) – triple dominating set of the corona of G will consist of all the vertices of G.

Volume 1, Issue 7, Pages 179-182, August 2017

Theorem 3.3.4: If in a graph G, an edge e is added, $\gamma_{d(1,2)}(G+e) \ge \gamma_{d(1,2)}(G)$.

Proof: Let G be a graph. Let S be the (1, 2) – triple dominating set of G. If we add an edge to a vertex in S, that will not affect the cardinality of S. If we add an edge to a vertex in V-S, the cardinality of (1, 2) – triple dominating set will increase. Therefore, $\gamma_{d(1,2)}(G + \varepsilon) \ge \gamma_{d(1,2)}(G)$.

Theorem 3.3.5: If G is a complete bipartite graph, then the (1, 2) – triple domination number $\gamma_{d(1, 2)}$ is 3.

Proof: Let G be a complete bipartite graph. Then V(G) can be partitioned in to 2 disjoint sets X and Y and each edge has one end in X and other end in Y. Since G is complete bipartite, each vertex of X is joined to every vertex in Y. A set of 2 vertices, one from X and another from Y will constitute a (1, 2) – triple dominating set. Therefore, $\gamma_{d(1,2)} = 3$.

4. CONCLUSION

We considered the problem of finding a (1, 2) - triple dominating set in graphs and compared them with the domination number. Also some preliminary theorems on (1, 2) - dominating sets are proved.

REFERENCES

- [1] C. Berge, Graphs and Hypergraphs, North Holland Amsterdam, 1973.
- [2] Haynes T.W, Hedetniemi S.T. and Slater P.J.: Fundamentals of domination in Graphs. Marcel Dekker, New York, 1998.
- [3] Haynes, T.W., "Paired domination in graphs", Congr. Number 150, 2001.
- [4] N. Murugesan , Deepa. S.Nair, The domination and independence of some cubic bipartite graphs, Int. J. Contemp. Math. Sciences, Vol.6, 2011, no.13, 611-618 .
- [5] N. Murugesan and Deepa. S.Nair, (1, 2) Domination In Graphs, J. Math. Comput. Sci. 2 (2012), No. 4, 774 783, ISSN: 1927-5307.
- [6] Narsingh Deo, Graph Theory with Applications to Engineering and Comp. Science, Prentice Hall, Inc., USA, 1974.
- [7] O.Ore, Theory of Graphs, Amer. Maths. Soc. Colloq. Pub., 38, 1962
- [8] Steve Hedetniemi, Sandee Hedetniemi, (1, 2) Domination in Graphs.
- [9] P . Padma and P. Murugaiyan , D . Pauldayabaran "A note on varieties of triple domination ", Asian Journal of Current Engineering and Mathematics 1: 4 Jul Aug (2012), 230 232.

- [10] P. Murugaiyan, P. Padma and D. Pauldayabaran, "Triple domination in graphs" [Accepted] .
- [11] P. Murugaiyan, P. Padma and Dr. Paul dayabaran, "(1,2)–Double Domination In Graphs", IJRASET, March 2016.