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I. INTRODUCTION 

In most existing robotic manipulators, maximizing stiffness to minimize vibration and achieve good position 

accuracy of robotic manipulators is a key element in their design. This high stiffness is achieved by using weighty 

material and a huge design. Hence, the existing heavy rigid manipulators are shown to be inefficient in terms of 

power consumption and operational speed. In order to develop industrial productivity, dropping the weight of the 

arms and increasing their speed of operation are required. Therefore, flexible-joint manipulators have received a 

thorough attention lately, thanks to their lightweight, lower cost, larger work volume, better maneuverability, 

higher operational speed, power efficiency, and larger number of applications. 

However, controlling such systems still faces several challenges that have to be addressed before they can be used 

in abundance in everyday real-life applications. The control issue of the single link flexible joint is to design the 

controller so that link of robot can attain a desired position for track a prescribed trajectory accurately with 

minimum vibration to the link. In order to achieve these goals, several methods using different technique have been 

proposed. However, controlling such  systems are  faces  several  challenges that  need  to  be addressed before they 

can be used in abundance in everyday real-life applications. The severe nonlinearities, coupling stemming from  the  

manipulator’s flexibility,  varying operating conditions, structured and unstructured dynamical uncertainties, and 

external disturbances, are among the emblematic challenges to be faced with when trade with such often ill-defined 

systems. These kind of Industrial single link flexible robot manipulators are mainly positioning and handling  

devices. The  essential  problem  in controlling robots is to make the robot  manipulator  follow  a  desired  input  

trajectory.     In general degree of freedom rigid robot manipulator is characterized by nonlinear, dynamic, coupled 

differential equations. The problem of controlling robot manipulators still offers much kind of practical and 

theoretical challenges due to   the   complexities   of   the   robot   dynamics   and   the requirement to attain high 

precision trajectory tracking in the cases of high velocity movement and highly varying loads. 

AB STRAC T  

The advance methodologies to optimize fuzzy logic controller parameters  via  neural  network and use  the  neuro- fuzzy scheme to control the 

single link flexible joined robot manipulators. The  dynamics of  robot single link manipulators   are   highly   nonlinear   with   strong   couplings 

existing   between   joints   and   are   frequently   subjected to structured and unstructured uncertainties. The increased complication of robots 

manipulator considering joint elasticity makes conventional model-based control strategies complex and difficult to manufacture. This paper 

presents investigations into the development of neuro fuzzy control for position control of a single link flexible joint manipulator. To study the 

effectiveness of the controllers, an adaptive Neuro Fuzzy Controller is developed for tip angular position control of a flexible joint manipulator. This 

is then extended to incorporate a neuro fuzzy Controller for position error decrease of the flexible joint system. Simulation   results   of   the   

response   of   the   flexible   joint manipulator with the controllers are obtained in time domains. The performances of the adaptive neuro fuzzy 

control schemes are examined in terms of input tracking of position in robotics, and also graphically plotted in time response specifications. 
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This paper presents investigation into the development of adaptive neuro fuzzy control for trajectory tracking of tip 

angular position and vibration control of flexible joint manipulator. Initially a adaptive neuro fuzzy Control is 

developed for trajectory tracking of tip angular position. The performances of the composite control schemes are 

examined in terms of input tracking capability, level of vibration reduction and time response specifications. The 

rest of the paper is  structured as  follows: Section II  provides a  brief description of the flexible joint manipulator 

system considered in this study. In Section III, we introduce a number of soft computing-based controllers. The 

design of the proposed controller is detailed in Section IV. In Section V, simulation results are reported and 

discussed. We conclude with a few remarks and suggestions for further studies pertaining to this important, yet 

complex, control problem. 

II. FLEXIBLE-JOINT MANIPULATOR DYNAMICS 

A. Flexible-Joint Manipulator Modeling 

Typically, a flexible joint can be modeled as shown in Fig.1.The actuator is coupled to a flexible transmission 

through an r : 1 reduction gear. The transmission is directly linked to the load (e.g., manipulator link).Consider a 

robot manipulator with n revolute flexible joints.  

 

Fig.1. Flexible-joint model 

Using Euler– Lagrange formulation and neglecting gyroscopic effects, the dynamic equations of the manipulator 

can be written as: 

 (1) 

          (2)  

                                                 (3) 

Where, 

q = Rn                 vector of links’ positions; 

θ =Rn                   vector of motors’ positions; 

M(q) =Rn×n        manipulator’s positive definite inertial matrix; 

C(q, q˙) =R
n×n    

matrix of Coriolis and centrifugal terms; 
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G(q) = Rn             vector of gravitational torques;  

Jm = Rn×n            motors’ diagonal inertial matrix;  

τt = Rn                   vector of transmission torques; 

τm = Rn                  motors’ generalized torque vector (control input); 

τfl =Rn                    load friction vector; 

τfm = Rn                  motors’ friction vector; 

τdl = Rn                   load’s unmodeled dynamics and external disturbance vector; 

τdm = Rn                 Motors’ unmodeled dynamics and external disturbance vector; 

K = Rn×n                 Diagonal matrix of joints’ stiffness coefficients; 

r =R                       Gear ratio. 

Given  the  desired  trajectories  qd   and  q˙d,   we  aim  to design a control law τm  which ensures that the 

manipulator’s position q and velocity q˙ track their desired trajectories under unknown dynamics and in the 

presence of external disturbances. The proposed controller uses q, q˙, and θ˙ as system’s measurable states, and 

the manipulator’s parameters M(q), C(q, q˙), G(q), Jm, τfl, τfm, τdl, and τdm are assumed to be unknown. 

B. Problem Statement 

The control objective is to design a control law m  to force the manipulator’s position q  and velocity q.
d  to 

track their predefined time-dependent desired values qd and q.
d, respectively. This objective is to be reached 

under unknown or uncertain system’s dynamics. 

III. SOFT COMPUTING BASED CONTROL 

In spite of the recent advances in the area of nonlinear control systems, the common point still shared by the vast 

majority of  conventional control techniques is  their dependence on precise mathematical models of the systems 

to be controlled for them to provide satisfactory performance. In real life, and due to the typical high nonlinearities 

within the dynamics of  flexible-joint manipulators, deriving a  precise model for such systems could be a difficult 

undertaking. Although conventional adaptive control strategies, such as in sliding mode controllers, compensate 

for the system’s parametric uncertainties, they are still vulnerable in the face of unstructured modeling 

uncertainties. Expert controllers based on tools of soft computing, on the other hand, may not have such a 

limitation. In fact, computational intelligence tools, in general, have been credited in a number of applications to 

provide satisfactory results in the face of relatively large magnitudes of noise in the input signals, of dynamically 

variable parameters, and in the lack of a precise mathematical model of the   system   in   hand.   The   two   types   
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of   computational intelligence tools that we are concerned with in this work are fuzzy logic controllers (FLCs) 

and artificial neural networks (ANNs). 

Among  the  main  features  of  FLCs  is  their  ability  to generate adequate control decisions inference through 

human- like linguistic descriptions. These are represented by fuzzy rules based on heuristics, knowledge, and 

experience, and are often  used  to  control a  given  system. A  special inference mechanism processes the 

information stored in the knowledge base to determine the adequate control action to be taken at any given 

operating condition. 

An  n-input  m-output  fuzzy  logic  controller  (FLC)  can  be regarded as a mapping from U = U1×U2×………Un 

into V = V1×V2×……Vm, where Ui ϵ R, Vj ϵ R, for i = 1, 2………. n and j = 1, 2………m. The output y = 

(y1………… ym) T of an n-input  m-output  FLC  with  a  center-average  defuzzifier, 

Sum product inference, and singleton output fuzzifier, is given by: 

 

Where, x = (x1…………..xn)T  ϵ U is the FLC’s input vector, µ A(t) I are the membership functions of the fuzzy 

sets A(l)
t, Σ denote the fuzzy t-norm and t-conorm operations used, respectively, l is the rule index from a total of 

L rules, and y(l) j is the point in Vj at which B (l) j achieves its maximum value which is assumed to be 1. In this 

paper, we use the “min” and “max” operators as the t-norm and t-conorm, respectively. The FLC is capable of 

uniformly approximating any well-defined nonlinear function over a compact set U to any degree of accuracy. 

ANNs represent another type of soft computing technique and an important class of numerical learning tools 

known as connectionist modeling. An ANN is a set of interconnected computational nodes in which information is 

processed and transferred from one node to another through the means of weighted   links   with   the   purpose   of   

mimicking   the functionality of the neurons in the human brain. ANNs are characterized by their nonlinear 

behavior, parallel processing, and  their  automatic  optimization and  learning  capabilities. These advantages have 

been behind the increasing popularity of ANNs for numerical modeling and control, especially for systems on 

which little is known about their dynamics and operating environments. Just like FLCs, the neural network 

universal approximation theorem guarantees that any sufficiently smooth function can be approximated to any 

degree   of   accuracy   using   a   single-hidden-layer   ANN. Although several neural network-based controllers 

have been proposed   in   the   literature,   the   supervised   multi-layer perceptron scheme is among the simplest and 

most popular schemes, particularly in  control  systems’ applications. The network’s learning mechanism is often 

carried out as to minimize the network’s output error based on a user-defined feedback signal 

IV. ADAPTIVE NEURO FUZZY CONTROL 

In recent years, intelligent control in general, and neuro-fuzzy control in particular, have been quite inspiring 

paradigms for real-time control applications. Neuro-control based artificial neural networks, having the ability to 
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learn from input-output non-linear functions, are good candidates for solving complex nonlinear control problems. 

Neurons are basically non-linear elements; hence, neural networks are basically non-linear systems  which  can  be  

used  to  learn  and  solve  non-linear control problems that are usually too difficult for traditional and conventional 

control methods to handle. Using the inverse model as the main block in the neuro-control approach is one of the 

most widely applied schemes. 

In order to achieve accurate trajectory tracking and good control performance, a number of control schemes have 

been developed. Amongst these, Adaptive Neuro-Fuzzy System has provided best results for control of robotic 

manipulators as compared to the conventional control strategies. ANFIS is a fuzzy inference system implemented 

in the framework of adaptive networks. By using a hybrid learning procedure, the ANFIS can construct an 

input-output mapping based on both human knowledge (in the form of fuzzy if-then rules) and stipulated 

input-output data pairs. The hybrid learning algorithm identifies the membership function parameters of 

single-output, Sugeno type fuzzy inference systems (FIS). A combination  of  least  mean  squares  (LMS)  and 

back propogation  gradient  descent   methods  are  used  for training  FIS  membership  function  parameters  to  

model  a given set of input/output data. The parameters associated with the   membership   functions   change   

through   the   learning process. The training process stops whenever the designated epoch number is reached or 

the training error goal is achieved. 

The nonlinearity prevailing in the arm dynamics induces high   uncertainty   in   the   performance   of   the   robotic 

manipulators under conventional control strategies. The use of the  intelligent systems  such  as  neural  networks 

and  fuzzy control has provided better results. But a combination of such intelligent systems, like, neuro-fuzzy or 

ANFIS provides even better results than just neural networks. 

A. ANFIS architecture 

For simplicity, we assume the fuzzy inference system under consideration has two inputs x and y and one output 

z. Fig.2 Depicts  the  structure  of  Adaptive  neuro  fuzzy  controller below: 

 

Fig.2. Structure of neuro fuzzy controller 
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B. ANFIS Modeling 

Modeling   was   performed   using   MATLAB   7.8. ANFIS and Sugeno-type fuzzy inference systems were used in 

the modeling of robot manipulator. Single Input Single Output models consisting of inputs including position and 

velocity were developed to predict outputs. Sugeno-type fuzzy inference systems were generated by using Genfis 

which utilized subtractive clustering to compute the models for the product properties. The purpose of clustering 

was to identify natural groupings of data to produce a concise representation of the behavior of the system. The 

fuzzy models generated from the membership functions and rules were data-driven by the process data for each 

mechanical property. Each set of process data collected from the extrusions consisted of 40 data points from which 

70% and 30% were selected randomly for training and  testing,  respectively. The  models  were  developed  and 

implemented using 3000 epochs and a radius of 0.5. The input data   were   the   process  data   acquired  by  the   

computer consisting position and velocity readings from extrusion. The input and output data sets contained inputs 

(position, velocity) and one output torque. 

V. SIMULATION RESULTS AND DISCUSSION 

Experimental Setup 

Let ∆q = q - qd  and ∆µ = µ - µ d  denote the links’ and motors’  position  errors,  respectively,  with  µ d  being  

the unknown desired time-dependent motor position vector. The control  strategy  is  based  on  the  design  of  an  

adaptive controller  that  not  only leads  to  a  precise  tracking of  the system’s nominal desired signals, but also 

improves the motors’ internal stability. Should the motors’ desired position µ d have been available, the control 

strategy would be based on tracking ∆q and ∆µ to zero. Since that is not the case, we define the following 

compounded velocity error signal 

    

For a diagonal matrix  λ = diag (λ1, λ2……. λn) with ¸ λi  ϵ [0,1], i  =  1……  n.  The  feedback gain  λ  is  

introduced to provide a trade off between the link tracking performance and internal stability, due to the high 

nonlinear coupling between the two. 

 

Fig.3 simulation diagram of single link flexible robot manipulator 
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To demonstrate the performance of the proposed controller, a set of numerical experiments is carried out on a 

single link flexible-joint manipulator. The manipulator’s dynamics in terms of its physical parameters is defined 

by M(q) = I,   C(q, q˙) = 0, and G(q) = mgl sin(q), where m is the link’s mass, g is the gravity constant, and l is the 

link’s length. Table I summarizes the manipulator’s physical parameters along with their respective values. The 

stiffness coefficient and gear ratio are assumed to be K = 5 N · m/rad and r = 1. 

 

Fig.4 Model of single link robot manipulator position control Simulink 

 

Fig.5 Manipulator’s position reference signals. 

 

Fig.6 output of single link flexible robot manipulator position 

 

Fig.7 Anfis controller response of manipulator position 
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Fig.8 Single link manipulator’s Position error 

VI. CONCLUSION 

The development of adaptive neuro fuzzy control techniques for position error reduction of a single link flexible 

joint robot manipulator   has   been   presented.   The   proposed   control schemes have been implemented and 

tested. The control strategy is based on a neuro fuzzy control approach while taking into account the actuators 

relative stability criterion by introducing a trade-off between the actuators’ internal stability and the link’s position. 

The performances of the control schemes have been evaluated in terms of input position and velocity error 

reduction at the resonance modes of the manipulator. Acceptable performance in input position and velocity control 

has been achieved with proposed control strategies. The work has developed and reported in this forms the  basis  of  

design  and  development  of  hybrid  control schemes for  input position and  velocity error  reduction of multi-link 

flexible manipulator systems and can be extended to and adopted in practical applications. 
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