Preparation of Series Schiff Bases and Studying of their Liquid Crystalline Behavior

Dr. Kareem Jaber

1Assistant Professor, Department of Chemistry, Faculty of Science. Email: karee2000@hotmail.com

Article Received: 05 October 2017 Article Accepted: 21 October 2017 Article Published: 29 October 2017

ABSTRACT

This paper involved preparation of two types of imine compounds differ in the type of terminal group, where one of them has a terminal carboxyl group COOH while the other contains methoxy OCH₃ as a terminal group. In the first part of this research it was identification by spectroscopy methods using infrared IR and nuclear magnetic resonance H NMR spectrum, besides elemental analysis shows the exact chemical structure of the expected synthesized compounds. In the second part was the study of liquid-crystalline behavior by polarized optical microscopy POM and differential scanning calorimetry DSC that showed a liquid crystal phase in the compounds that has odd number of carbon atoms in the terminal chain compounds in the first series, while the second series compounds showed liquid crystal phase in the compounds that containing even number of atoms of carbon in the terminal chain.

Keywords: Heat, Nod and Differential scanning calorimetry.

1. INTRODUCTION

Heneazomet are a new phases of matter add to the three well-known phases (solid, liquid and gas) [1]. The differences between these three well-known states can be attributed to the temperature of the substance. Temperature is a measure of the randomness of the molecules and therefore the higher of temperature is the less order they exist. Increasing temperature will cause the transition from a solid to a liquid and then to a gas. However, many materials exhibit more than a single transition when passing from solid to liquid, which proves the presence of one or more intermediate phases [2]. The new phases have mechanical, optical and structural properties between those of crystalline solid and the corresponding isotropic liquid. These phases are referred to as liquid crystalline phases [3,4].

Thermotropic liquid crystals is one of two types of liquid crystals (and the second is called lyotropic) , Most thermotropic liquid crystals are rod-like molecules having a rigid core composed of two or more aromatic rings and one or more flexible terminal chains.

The liquid crystal mesogen must contain a side-chain to give a linear that required to the liquid crystalline behavior. Schiff base (also known as imine CH=N) is a linking group used to connect between core groups. It has been received overwhelming response in liquid crystals research ever since in 1970 where Kelker discovered the 4-methoxybenzylidene-4′-butylaniline (MBBA) which exhibit nematic phase at room temperature.

In our studies, Schiff base and alkylxy terminal moieties are incorporated into a new series of homologous compounds with two different group in the other side of chain, 4-(alkoxybenzylideneamino)benzoic acid and 4-methoxy-N-(4-alkoxybenzylidene)aniline.
2. EXPERIMENTAL

1- 18.3 mL of concentration hydrochloric acid and , (0.22mol, 23.98 gm) of para- amino phenol were introduced in a beaker containing 500ml of distilled water. The mixture was stirred until the amine completely passes in to solution.

2- To the resulting solution 25.6mL of acetic anhydride with (three drops of H2SO4acid concentration) were added and stirred and then immediately was poured in a solution of (33gm, 0.402mol) of crystallized sodium acetate in 100mL of water. The solution was stirred vigorously and cooled in ice.

3- The N- (4-hydroxyphenyl) acetamide was filtered with suction washed with a little distilled water ,and dried upon filter paper in air melting point was (169-170) C° . [5,6]

Preparation of N-Alkali bromides

1- In a round bottomed flask equipped with a separation funnel and a condenser set downward for distillation, (71ml) of HBr acid (48%) and (16.5ml) of concentration H2SO4acid drop wise was added with stirring.

2- After cooling(0.5mol) of appropriate alcohol was added in portions (the end of the condenser was connected to an adapter dipping in to water contained in a 250ml flask, the later was surrounded by ice) then (2.5ml) of concentration H2SO4 acid was introduced gradually through the separation funnel and the mixture was distilled slowly until no more oily drops pass over .

3- the organic layer was separated ,washed successively with water ,10 % Na2CO3solution and then with water, dried over anhydrous calcium chloride .it is used without further purification [6].

2.1 Preparation of N-(4-methoxyphenyl) actamide

1- (3.75gm, 0.025mol)of 4-actemido phenol were dissolved in 15mL of ethanol in aconical flask and with added potassium hydroxide solution (1.85gm, 0.033mol),in a lest volume of (~ 1.5mL)by stirred magnetic stirrer.

2- A solution of appropriate methane bromide (0.025mol) in 12.5mLdissolved in added ethanol,

3- The mixture heated by using appropriate condenser for more than one hour (then 6mL distilled water added and the product was washed recrystallize for ethanol, melting point (129C°) [7].

2.2 Prepare of 4-methoxy aniline

1- In conical flask4 N- (actamide – methoxy phenyl)(0.025mol) is dissolved in (12.5ml) ethanol and heated

2- Add to the mixture (3.75ml) potassium hydroxide solution (20M) .the mixture was heated for three hours,

3- The solvent was distillation by using evaporator rotator.

4- The product was extract of benzene then dried by anhydrous magnesium sulfate.

5- The benzene was evaporated by rotary evaporator , the product has a melting point 58C0 [5.6].

2.3 Prepare of 4-alkyloxy banzaldehayd

1- (3.77gm)(0.025mol,) of 4-hydroxy banzaldehayd dissolved in 15 mL of ethanol in a conical flask to the stirred solution and slowly was added solution of (0.033 mol) for KOH (1.85gm dissolved in less volume of water a (~ 1.5mL)}
2- Then it was added of a solution of appropriate Alkyl bromide (0.025mol) in 12.5mL ethanol.
3- The mixture was heated with stirring continued stir for more than one hour. 6mL of water was added to mixture and then the product was extracted by petroleum ether and
4- Then washed the extract with distillated water and the solvent was evaporated, the pure product was liquid yellow color [7].

PREPARE OF SCHIFF BASES

We prepare two chain schiff bases

The first chain: 4-(4-alkoxybenzylideneamino)benzoic acid

1- equal moles number of 4- amino benzoic acid and 4-alkyloxy banzaldehyde dissolved in absolute ethanol with three drops of glacial acetic acid
2- the mixture was heated reflux for three hours,
3- the mixture was cooled and washed with a small amount of ethanol and then dried the resulting
4- the compound was purified by ethanol about three once.

The second chain: 4-methoxy-N-(4-alkoxybenzylidene)aniline

1- equal moles number of 4- methoxy aniline and 4-alkyloxy banzaldehyde dissolved in absolute ethanol with three drops of glacial acetic acid
2- the mixture was heated reflux for less than hours,
3- the mixture was cooled and washed with a small amount of ethanol and then dried the resulting.
4- the compound was purified by ethanol about three once [8].

3. CONCEPT AS DEFINED

The compound was purified by ethanol about three once [8]

![Figure (1) infrared spectrum of the compound 4-methoxy actamide](image-url)
Figure (2) infrared spectrum of the compound 4-alkoxy aniline

Figure (3) infrared spectrum of the compound 4-alkoxy bantzaldehyde
RESULTS AND DISCUSSION

Identification of Prepared compound:

1- CHN analysis: all data of analysis of compounds in this table

2- FT.IR-spectra: which gave good indicators about all data of functional groups in prepared compounds
Figure (4) infrared spectrum of the compound C5

1. absorption bands at 1118 due to a group -O-CH2-CH2
2. absorption bands at 1618 due to imine group CH = N
3. absorption bands at 1737 due to the carbonyl group carboxylic
4. absorption bands at 2918 due to aliphatic CH
5. absorption bands at 2600-3198 due to OH of the carbonyl
6. absorption bands at 3032 due to aromatic CH

Figure (5) infrared spectrum of the compound C7
From IR spectrum of a compound most important absorption bands represent functional groups are:

1. absorption band at 1170 due to a group -O-CH2-CH2
2. absorption band at 1630 belonged due to imine group CH = N
3. absorption band at 1735 due to the carbonyl of carboxylic group
4. absorption band at 2983 due to aliphatic CH
5. Broadband absorption at 2574-3200 due to OH of Carbonyl group.
6. absorption band at 3034 due to aromatic CH

Figure (6) infrared spectrum of the compound M4

Figure (7) infrared spectrum of the compound M6
1. absorption band at 1116 due to ether -O-CH2-CH2
2. absorption band at 1154 due to ether -O- CH3
3. absorption band at 1624 due to imine group CH = N
4. absorption band at 2968 due to aliphatic CH
5. absorption band at 3043 due to aromatic CH

1. absorption band at 1168 due to ether -O-CH2-CH2
2. absorption band at 1618 due to imine group CH = N
3. absorption band at 1207 due to ether -O- CH3
4. absorption band at 2912 due to aliphatic CH
5. absorption band at 3032 due to aromatic CH

3- HNMR spectra: all peaks appeared in figures

![Figure (8), nuclear magnetic resonance spectrum of the compound C5](image-url)

1. peaks at (0.90-1.80)ppm due to alkyl groups (CH3CH2 CH2 CH2)
2. peaks at (6 2.5) ppm solvent due to DMSO-d
3. peaks at (3:41) ppm solvent due to O-CH2
4. peaks at (6.62-7.84) ppm due to phenyl ring
5. peaks at (8.41) ppm due to (CH = N)
6. peaks at (13:28) ppm due to Carboxyl group
Figure (9) HNMR spectrum of the compound C7

1. peaks at (0.90-1.50)ppm due to alkyl groups (CH3CH2 CH2 CH2)
2. peaks at (2.5) ppm solvent due to DMSO-d
3. peaks at (3:5) ppm solvent due to O-CH2
4. peaks at (6.61-7.42)ppm due to phenyl ring
5. peaks at (8.11))ppm due to (CH = N)
6. peaks at(12.98) ppm due to Carboxyl group

Figure (10) HNMR spectrum of the compound M4

1. peaks at (0.90-1.70)ppm due to alkyl groups (CH3 CH2 CH2)
2. peaks at (2.5) ppm due to solvent DMSO-d
3. peaks at (3:10) ppm due to O-CH3
4. peaks at (3.30-3.60) ppm due to OCH2CH2
5. peaks at (6.97-7.47)ppm due to phenyl ring
6. peaks at (8.55))ppm due to (CH = N)
1. peaks at)0.74-2.42)ppm due to alkyl groups (CH3CH2CH2CH2CH2-)
2. peaks at (2.5) ppm due to solvent DMSO-d
3. peaks at (3:43) ppm due to O-CH3
4+ . peaks at 3.93 ppm due to OCH2CH2
5.peaks at (7.16-7.39)ppm due to phenyl ring
6. peaks at (8. 30))ppm due to (CH = N)

REFERENCES
[1] O. lehmann, "Liquid Crystal", Ber 1908; 41:3774

